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GENERAL INTRODUCTION 
 
 

 
 There is no chemistry without nature. Every living creature, from the smallest 

bacteria to the blue whale, is all the result of billions upon billions of years of chemistry. 

One of the main challenges in organic chemistry, then, is achieving in the laboratory what 

nature is able to do every day and building upon the foundation that which the natural 

world has given us.  

 With this in mind, this thesis is divided into two fronts: the chemical synthesis of 

naturally occurring compounds and the preparation of chemicals from biobased sources. 

The first part will focus on the total synthesis of natural products, in particular the 

compound salvinorin A and a new class of  antimicrobials. In each case, the total 

synthesis of the material will be considered, as well as the preparation of analogues to 

that material. The second part will address the issue of renewable chemicals. The current 

preparation of chemicals is largely based on petroleum sources. This section will focus on 

the large-scale preparation of chemical intermediates, not from petrochemical feedstocks, 

but from biobased sources.   
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CHAPTER 1. SYNTHESIS OF ANALOGUES TO NATURAL PRODUCT  
 

SALVINORIN A  
 
 

Introduction 
 
 Salvinorin A is a potent kappa opioid receptor agonist that originates from the 

Mexican plant Salvia Divinorum, a member of the Sage family. It was previously used in 

divination ceremonies by the Mazatecs, and has become more commonly used 

recreationally in the past decade. It is the most potent naturally occuring hallucinogen, 

with an activity in doses as low as 200 µg.1 Its activity is comparable to morphine, and 

thus has potential for use as a therapeutic agent in medicine.   

 

O O

O

O

AcO

CO2Me

H H

1  

Figure 1. The structure of salvinorin A 

 

 The structure consists of a tricyclic core with seven stereogenic centers, four of 

which are alpha to carbonyl moieties and are therefore epimerizable by basic conditions. 

A fifth chiral center can be epimerized by hydrolysis and reformation of the lactone via a 

known procedure.2 Interestingly, unlike morphine and similar compounds, salvinorin A 

lacks an amine group (and thus is not an alkaloid.)     
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 The structure/function relationship of the various functional groups in the 

compound has been extensively studied,3 the results of which are summarized in Figure 

2. In general, reduction is tolerated, and in some cases simple modification is tolerated as 

well. Certain modifications actually gave increased activity; for example, changing the 

C2 acetyl ester group to a methoxymethyl protected ether lead to a more active 

derivative. Interestingly, the methyl groups do not seem to be critical for the biological 

activity and are presumably an artifact of the biosynthesis from terpene subunits.   

 

 

 
Figure 2. Structure-activity relationships within salvinorin A (taken from ref. 3) 

 
 
  
 The total synthesis of the compound has been studied for many years by various 

groups,4 but was first achieved in 2007 by Evans.5 This elegant synthesis utilizes a bis-

Michael Addition pathway as the key step (Figure 3) to prepare the title compound 1 in 

23 steps with an overall yield of 1.8% as a single enantiomer. A later synthesis by  
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Hagiwara and coworkers produced 12-epi-salvinorin A over a 20-step series with a 2.6% 

overall yield from known starting materials.6     

  
 

Figure 3. Key step in the Evans synthesis of salvinorin A (taken from ref. 5) 
 
 
 
 The Kraus lab had attempted to achieve the total synthesis as well, but were 

unsuccessful. The retrosynthetic analysis is shown in Figure 4. The key step in this 

sequence was a Diels-Alder cyclization utilizing enone 4 as the dienophile. If the Diels-

Alder pathway was unsuccessful, a Michael Addition pathway would also be considered, 

again using compound 4 as a Michael acceptor. The advantage of using 4 as the starting 

material is that the cyclic lactone fixes the relative stereochemistry of the C2 and C4 

functional groups and and can be opened by simple hydrolysis. 
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Figure 4. Retrosynthetic analysis of salvinorin A 

 

 The preparation of 4 was accomplished based on a procedure by Corey 7 starting 

from commerially available 3-cyclohexene-1-carboxylic acid (Scheme 1). Epoxidation of 

the starting alkene with meta-chloroperoxybenzoic acid (mCPBA), followed by treatment 

with base lead to formation of lactone 5 in good yield. Oxidiation of the resulting alcohol 

to the ketone using pyridinium chlorochromate (PCC) lead to ketone 6.  

 Transformation of 6 to the alpha-beta unsaturated ketone proved to be more 

difficult than originally expected. The typical selenoxide elimination procedure (i.e. 

selenation alpha to the ketone using base and diphenyl diselenide, oxidation of the  
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selenide to the selenoxide, and spontaneous elimination of the selenoxide to form the 

enone via a retro hetero ene-reaction) was ineffective in this case.8 The only method that 

was moderately successful to produce the compound was a procedure by Larock and 

Kraus9 involving forming the enol silyl ether of the ketone using lithium diisopropyl 

amide (LDA) and trimethylsilyl chloride (TMSCl). Treatment of enol silane 7 with 

palladium acetate in DMSO using an atmosphere of oxygen lead to formation of desired 

compound 4 in 30% maximum yield over the two-step sequence. 

  

CO2H OH

O

O

1. mCPBA
2. Et3N

77%

O

O

O

PCC
87%

5 6

LDA, TMSCl

OTMS

O

O
7

10% Pd(OAc)2
O2, DMSO
80 ºC, 12 h

30% (2 steps)

O

O

O
4  

Scheme 1 

 

 Compound 4 underwent various Diels-Alder cyclization conditions, including the 

use of Lewis acids to help catalyze the reaction,10 but with no success. The use of 

Danishefsky's diene,11 trans-1-methoxy-3-trimethylsilyloxy-1,3-butadiene a very reactive 

diene molecule, also failed (Scheme 2.)  
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O

O

O
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overnight

O

O

O O
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4 8  

Scheme 2 

 

 With the lack of success of the Diels-Alder pathway, a Michael Addition strategy 

was employed. A 'soft' nucleophile such as the anion of ethyl acetoacetate was utilized 

(Scheme 3) to produce the desired compound 9, unfortunately without success. Other 

Michael addition substrates were attempted, such as allyl cuprate, but were either 

unsuccessful or plagued with low yields. The rationale for this unusual result was the 

strain of the lactone ring prevented proper attack by the nucleophile. 

 

 

O

O

O

O

O

O
O

CO2Et

O
CO2Et

NaH
THF, rt, 1-2 h

4 9  

Scheme 3 
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 The failure to functionalize 4, coupled with the fact that several syntheses of 

salvinorin A were published, suggested that the focus of the project needed to change. 

Instead of the total synthesis of the natural product, the focus would be on producing 

analogues to salvinorin A.   

 The most logical direction to move was to synthesize compounds with structures 

analogous to salvinorin A, with the hope that they exhibit a similar biological activity as 

the true natural product. Of course, the new targets would have to have a similar 

structural framework as salvinorin A, but with decreased molecular complexity. The 

advantage of this new strategy is that even if the new target compounds show decreased 

biological activity than the actual natural product, the overall synthesis would be 

shortened, thus allowing easier access to the target compound. Compare this to a total 

synthesis, which, although worthwhile chemically, may take too many steps to be 

practical. Likewise, because salvinorin is such a highly active molecule, a compound 

with even a fraction of activity would still be a significant find.  

 This strategy is similar to that employed on morphine (that is, decreasing the 

molecular complexity while retaining morphine-like activity) which lead to the formation 

of the so-called Morphine Rules.12 These state that a molecule will have morphine-like 

activity if it meets the following requirements: 
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1. A tertiary amine, typically attached to a non-bulky group such as methyl  

2. An aromatic ring or steric equivalent 

3. A quaternary center directly attached to the aromatic ring 

4. A two-carbon linker connecting the amine and the quarternary center  

 

 If the compound meets these minimum requirements, it will exhibit some 

morphine-like activity, regardless of the rigidity of the structure. Morphine and selected 

analogues are shown in Figure 5. In each case, the overall molecular complexity is 

decreased, although some are simpler than others (methadone versus pentazocine). Along 

the same lines, the activity of analoguous compounds is decreased. Therefore this 

strategy could be seen as a compromise between biological activity for ease of synthesis. 

 The rationale for why these compounds exhibit similar activity as morphine is that 

the necessary functional groups are allowed to freely rotate to the desired conformation 

for the required mu opioid receptors that are activated by morphine.  
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HO

N

levorphanol
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Figure 5. Morphine Analogues 

 

 With this in mind, a similar strategy could be employed for salvinorin A. That is, 

eliminating the rigidity of the compound, while still retaining the required functionality. 

This is shown in Figure 6. The tricyclic core structure could be simplified to a simple 

monocyclic compound. By extension, this would also eliminate four of the seven 

stereogenic centers in the molecule, with the remaining three all in easily epimerizible 

positions. All of the necessary functional groups of salvinorin A are present, but without 

the rigidity of the core structure. The hope is that the groups will orient themselves in the 

same conformation as in the natural product, and thus giving a similar activity. 

 Retrosynthetically, the compound could arise from simple conjugate addition and  
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oxidation of a 4-cyclohexanone ester. The aromatic side-chain could be easily formed via 

an esterification reaction from the corresponding carboxylic acid and 3-furanmethanol.  

 

O O

O

O

AcO

CO2Me

AcO
O

CO2Me

O

O

O

Michael Addtion, 
acetylation

O

CO2Me

+ O

O

(New Target Molecule)

H H

O

   

Figure 6. Retrosynthetic analysis of a salvinorin A analogue 

 

 
Results and Discussion 
 
 The synthesis of the first salvinorin A analogue commenced from the formation of 

enamine 16 from commercially available ethyl cyclohexanone-4-carboxylate 15. The first 

method employed was using stoichiometric titanium tetrachloride.13 However, 

subsequent Michael addition reactions with acrylates failed, presumably due to trace 

amounts of unwanted excess titanium tetrachloride and side product titanium dioxide. A 

simpler method to produce the enamine was reaction of 4-cyclohexanone carboxylic acid  
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ethyl ester with pyrrolidine using para-toluene sulfonic acid (PTSA) as the catalyst and 

azeotropic distillation of water.14 Treatment of the enamine with a variety of acrylates, 

followed by hydrolysis gave the desired conjugate addition products in good yield.     

 

 

O

CO2Et

N

CO2Et

CO2R

O

CO2Et

CO2R

dioxane, reflux
overnight
2. H2O
80-90% 
(2 steps)

1.

pyrrolidine
cat. PTSA
benzene, 

-H2O

15 16 17: R = Et
18: R = tBu  

 
Scheme 4 

 
 

  

 With the Michael addition product in hand, we looked towards the remaining 

functional group modifications: the oxidation/acetylation alpha to the ketone, hydrolysis 

of the ester, and coupling of the ester with 3-furanmethanol. Direct Michael addition of 

16 with acrylic acid was unsuccessful. Likewise, using the ester of 3-furanmethanol also 

failed. With this in mind, the next steps of the synthesis are shown in Scheme 5. The 

trimethylsilyl ether of ketone 18 was made via typical conditions15 (i.e. treatment with 

LDA and quenching with trimethylsilyl chloride). Oxidation of the enol silane via 

Rubottom conditions,16 (epoxidation using mCPBA, followed by cleavage of the silane 

with tetrabutylammonium fluoride) gave intermediate alcohol 20. This was taken  
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directly in the acetylation step without purification using acetic anhydride in pyridine, 

giving product 21 in 15% yield over the three-step sequence.    

 
 

O

CO2Et

CO2tBu 1. LDA
2. TMSCl

OTMS

CO2Et

CO2tBu 1. mCPBA
2. TBAF

O

CO2Et

CO2tBuHO

Ac2O
pyr., cat. DMAP
15% (over 3 steps)

O

CO2Et

CO2tBuAcO

18 19 20

21   
 

Scheme 5 

 

 At this point, the compound was a mixture of stereoisomers and therefore needed 

to be epimerized with diisopropylethylamine in order to give the desired product. The 

three stereogenic centers are all on the cyclohexane ring and were therefore expected to 

all fall into the more favorable equatorial positions. The reaction was done in acetonitrile-

d3, monitoring by 1H NMR, using the diagnostic alpha acetoxy ketone peak at 5.3 ppm. 

By integration it showed a roughly 2:1 ratio of epimers by integration.  
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O

CO2Et

CO2tBuAcO
O

CO2Et

CO2tBuAcO
iPr2NEt
MeCN-d3

21 22  
 

Scheme 6 

  
 With the epimerized product in hand, the final steps of the synthesis were 

completed (Scheme 7). The tert-butyl ester moiety of 22 was cleaved with treatment with 

trifluoroacetic acid (TFA) to give the requisite acid 23.17 The acid was finally coupled 

with 3-furanmethanol under Steglich Esterification conditions18 to give the desired 

product 24 in 10% isolated yield.  

 

O

CO2Et

CO2tBuAcO
TFA

CH2Cl2
0 ºC
40%

O

CO2Et

CO2HAcO

O

OH
DCC

cat. DMAP
CH2Cl2

rt., overnight
10%

O

CO2Et

AcO
O

O

O

22 23 24
 

 
Scheme 7 

 
 
 One must note that the order of operations is extremely important in this case. 

Previous efforts involved cleavage of the tert-butyl ester with TFA and subsequent DCC 

coupling before the oxidation using mCPBA. However, this lead to a complex mixture  
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due to epoxidation of the furan ring moiety. Doing the Rubottom oxidation first, followed 

by cleavage of the ester to the acid, and coupling avoids the competition of the oxidation 

of the enol silane versus the furan ring.  

 The product was submitted to Dr. Prisinzano at the University of Kansas for 

biological testing, but it was found to have no KOR activity. It was suggested that the 

compound might be too flexible to allow the molecule to find the correct conformation 

for biological activity. In particular, the ring system of salvinorin A fixes the C-O single 

bond of the ester in the s-cis conformation (shown in red in Figure 7), whereas the open-

chain analogue favors the s-trans conformation over s-cis. Therefore, new analogues 

were considered that lock the degrees of freedom of the molecule and lock the 

functionality in the approximate positions they are in salvinorin A. 

 

O

CO2Et

AcO
O

O

O

O O

O

O

AcO

CO2Me

H H
O

CO2Et

AcO
O

O

O

s-trans conformation
(favored)

(24)

s-cis conformation
(disfavored)

(25)

Salvinorin A
(fixed s-cis)

(1)    
 

Figure 7. S-cis versus s-trans conformations in salvinorin 
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 The new analogue considered is shown in Figure 8. In this case, a double bond is 

employed to limit the conformational freedom of the molecule and to place the furan 

moiety in roughly the same position it is in the ring-locked salvinorin. Additionally, the 

hydrogen bonding of the amine proton with the ketone would fix the tethered furan ring 

moiety in the desired 'up' position, as it is in the natural product. It would arise simply 

from an alpha-keto aldehyde intermediate coupling with furfuryl amine.  

 

AcO

CO2Et

O

H

HN

O

(26)  
 

Figure 8. New salvinorin A analogue structure 

 

 
 The retrosynthesis of 26 is shown in Figure 9. Starting from the same 4-

cyclohexanone carboxylic acid ethyl ester used previously, an aldehyde moiety can be 

introduced in a similar fashion as a known procedure.19 Of note is that the aldehyde 

precursor greatly favors the enol form due to the hydrogen-bonding motif with the 

ketone. The same is true of enamine derivative; the hydrogen bond of amine fixes the 

nitrogen in the desired position.20 This also simplifies the molecule in that it further 

reduces the amount of stereogenic centers from three to two, both of which are still easily 

epimerizable via basic conditions. 
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AcO

CO2Et

O

H

HN

O

CO2Et

ONaOEt
ethyl formate

CO2Et

O

H

O

(26) (27)  
 

Figure 9. Retronsynthetic analysis 

 
 
 The synthesis began with typical Rubottom oxidation to give the desired alcohol 

(compound 28 in Scheme 8). This was protected as the tert-butyldimethylsilyl (TBS) 

ether (29) using well-known conditions.21 

 
 

O O

1. LDA
TMSCl

2. mCPBA
3. TBAF

23% (3 steps)

CO2Et CO2Et

HO
TBSCl

imidazole
100%

O

CO2Et

TBSO

28 29   
 

Scheme 8 

 
 
 Preparation of the desired aldehyde intermediate proved more difficult than 

expected (Scheme 9). The typical reaction procedure using ethyl formate and either 

sodium ethoxide or sodium hydride gave the desired product in unsatisfactory yields (i.e. 

less than 30%). Switching the base to potassium tert-butoxide was able to afford the  
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product (30) in much better yield (86%). Compound 30 was transformed into 31 via 

treatment of the furfuryl amine with catalytic PTSA.22 

 

  

O O
HCO2Et
KOtBu
THF
86%

CO2Et CO2Et

O

O

cat. PTSA
THF
51%

O HN O

CO2Et

TBSO TBSO TBSO

29 30 31

H

NH2

 
 

Scheme 9 

 
  

 The TBS ether moiety of the enamine adduct (31) was deprotected with hydrogen 

fluoride in pyridine23 and acetylated with acetic anhydride in a similar fashion as used 

previously to give compound 36. Epimerization with DBU afforded the salvinorin A 

derivative 26.    
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O HN O

CO2Et

TBSO

31

HF.pyridine
1:1 THF/pyr.

62%

O HN O

CO2Et

HO

1.5 equiv. Ac2O
1:1 CH2Cl2/pyr.
0.5 equiv. DMAP
44%

O HN O

CO2Et

AcO
DBU

MeCN-d3O HN O

CO2Et

AcO

32

33
26

 
 

Scheme 10 

 

 
 The new product was also submitted for biological testing, but unfortunately, was 

not found to have any desired KOR activity. 

 In conclusion, two structural analogues of salvinorin A were prepared. The first 

compound, 24, involved the Michael addition of an enamine to acrylates as the key step. 

The second analogue, 26, was prepared from the same starting material and utilized the 

preparation of an alpha-keto aldehyde and formation of an enamine.  

 

Experimental  
 
 Unless otherwise noted, materials were obtained from commercial suppliers and 
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used without purification. Tetrahydrofuran was distilled from sodium and benzophenone. 

All experiments were performed under an argon atmosphere unless otherwise noted. 

Organic extracts were dried over anhydrous magnesium sulfate. Nuclear magnetic 

resonance experiments were performed with a Varian 300 MHz instrument. All chemical 

shifts are reported relative to CDCl3 (7.27 ppm for 1H), unless otherwise noted. Coupling 

constants (J) are reported in Hz with abbreviations: s = singlet, d = doublet, t = triplet, q 

= quartet, m = multiplet, br = broad singlet, ABq = AB quartet. Standard grade silica gel 

(60 Å, 32-63 µm) was used for flash column chromatography. 

 

OH

O

O  

4-Hydroxy-6-oxabicyclo[3.2.1]octan-7-one (5) 

 To a solution of 3-cyclohexene-1-carboxylic acid (2 mL, 17.1 mmol) in 

dichloromethane at 0 ºC was added mCPBA (4.226 g, 18.9 mmol).  The reaction was 

allowed to stir at this temperature for 4 hours, followed by treatment with triethylamine 

(2.4 mL, 17.2 mmol) and stirring at room temperature for 3 hours. The reaction was 

worked-up by subsequent washing with NaS2O3 and NaHCO3. The crude material was 

purified by flash silica gel chromatography (1:2 hexanes/ethyl acetate) to yield product 5 

as a white power (1.879 g, 77% yield). 1H NMR (300 MHz, CDCl3): ∂  4.66 (t, J = 6 Hz, 

1H), 4.18 (m, 1H), 2.60 (br, 1H), 2.22-2.16 (m, 3H), 1.92-1.76 (m, 4H).  
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O

O

O  

6-Oxabicyclo[3.2.1]octane-4,7-dione (6) 

 To a solution of 5 in dichloromethane (318 mg, 2.2 mmol) was added PCC (721 

mg, 3.3 mmol), where the solution darkened immediately. The mixture was stirred at 

room temperature for 3 h, where it was filtered through a pad of Celite. The product was 

purified through flash silica gel chromatography (1:1 hexanes/ethyl acetate) to yield 6 as 

a white powder (270 mg, 86% yield). 1H NMR (300 MHz, CDCl3): ∂  4.66 (d, J = 6 Hz, 

2H), 2.89-2.74 (m, 3H), 2.31-2.27 (m, 2H), 2.12-2.06 (m, 2H). 

 

O

O

O  

6-Oxabicyclo[3.2.1]oct-2-ene-4,7-dione (4) 

 In an oven-dried flask under argon, freshly distilled diisopropylamine (0.2 mL, 

1.3 mmol) was dissolved in THF at -78 ºC. To this was added a 2.5 M solution of n-

butyllithium in hexanes (0.5 mL, 1.4 mmol), and the reaction was allowed to stir at -78 

ºC for 30 minutes. 

 A solution of keto lactone 6 (182 mg, 1.3 mmol) dissolved in THF was added to 

the solution of LDA at -78 ºC. After stirring for 1 hour, chlorotrimethylsilane (TMSCl) 

was added (0.15 mL, 1.2 mmol), warming to 0 ºC for 1 hour. The solution was filtered 

through a pad of Celite in order to remove the precipitated lithium salts and washed with 
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hexanes. The crude product 7 was concentrated via rotary evaporator and used in the next 

step without further purification. 

 Enol silane 7 was dissolved in freshly distilled dimethyl sulfoxide (DMSO) under 

an oxygen atmosphere. To this was added palladium acetate (29 mg, 0.13 mmol) and the 

reaction was heated to 80 ºC over a 12-16 hour period. After cooling to room 

temperature, dilution with dichloromethane, and aqueous work-up, the product was 

purified via flash silica gel chromatography (1:1 hexanes/ethyl acetate) as a yellow oil 

(53 mg, 30% yield, 2 steps). 1H NMR (300 MHz, CDCl3): ∂ 6.87 (d, J = 6 Hz, 1H), 6.11 

(d, J = 6 Hz, 1H), 4.82-4.78 (m, 1H), 3.75 (t, J = 6 Hz, 1), 2.50-2.40 (m, 2H).  

 

O

CO2Et

CO2R

 

Ethyl 3-(3-alkoxy-3-oxopropyl)-4-oxocyclohexanecarboxylate (17-18) 

 The ethyl ester of 4-cyclohexanone carboxylic acid (0.5 mL, 3.1 mmol) was 

dissolved in 20 mL benzene. To this was added pyrrolidine (0.26 mL, 3.2 mmol) and a 

single crystal of para-toluenesulfonic acid (PTSA). The reaction mixture was heated to 

reflux overnight with a Dean-Stark trap to azeotropically remove the water byproduct. 

The reaction flask was cooled, and the product concentrated to give the crude enamine 

product, which was used immediately in the next step without further purification. 

Unpurified enamine 16 was dissolved in 20 mL dry dioxane. The corresponding acrylate 

(R = Et or tBu, 1 equiv.) was added to the solution, where it was heated to reflux over a 6 



www.manaraa.com

23 

hour period. The reaction is quenched by cooling to room temperature and addition of 5 

mL water, stirring for 1 hour. The product was extracted with ethyl acetate, and the 

organic layer was dried over MgSO4 and concentrated. The product was purified by flash 

silica gel chromatography (2:3 hexanes/ethyl acetate) to yield the desired Michael 

Addition products 17 and 18. 

(17) Yellow liquid (439 mg, 80% yield, 2 steps). 1H NMR (300 MHz, CDCl3): ∂ 4.25-

4.08 (m, 4 H), 2.84-2.80 (m, 2H), 2.51-2.44 (m, 6H), 2.10-2.00 (m, 2H), 1.65-1.53 (m, 

2H) 1.24 (t, J = 6 Hz, 6H). 

(18) Yellow liquid (853 mg, 91% yield, 2 steps). 1H NMR (300 MHz, CDCl3): ∂ 4.21-

4.13 (m, 2H), 2.73 (t, J = 7 Hz, 2H), 2.44-1.80 (m, 10H), 1.43 (s, 9H), 1.26 (t, J = 7 Hz, 

3H). 

  

O

CO2Et

CO2tBuAcO

 

Ethyl 3-acetoxy-5-(3-(tert-butoxy)-3-oxopropyl)-4-oxocyclohexanecarboxylate (22) 

 In an oven-dried flask, LDA was prepared at -78 ºC using 2.5 M n-BuLi (0.37 

mL, 0.9 mmol) and diisopropylamine (0.15 mL, 1.0 mmol) in 10 mL THF. To this was 

added a solution of 19 (251 mg, 0.8 mmol) in 3 mL THF at -78 ºC. The reaction was 

stirred for 30 minutes. TMSCl (0.12 mL, 0.9 mmol) was added to the solution, where it 

was allowed to warm to 0 ºC over a 1 hour period. The product 20 was concentrated and 

used directly in the next step without further purification. 
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 Enol silane 20 was dissolved in dry dichloromethane at 0 ºC. To this was added 

solid mCPBA (209 mg, 0.9 mmol), which was warmed to room temperature over a 1 hour 

period. The reaction was treated with a 1 M solution of tetrabutylammonium fluoride 

(TBAF) in THF (1 mL, 1 mmol), and stirred for 2 hours. The reaction was worked up by 

dilution with dichloromethane, washing sequentially with saturated solutions of NaS2O3 

and NaHCO3, drying over MgSO4, and concentration. The product was purified by flash 

silica gel chromatography (1:1 hexanes/ethyl acetate) to give 21 as a yellow oil. 1H NMR 

(crude) (300 MHz, CDCl3): ∂ 4.20 (m, 1H), 4.12-4.09 (m, 2H), 2.88-1.63 (m, 10H), 1.86 

(s, 1H), 1.42 (s, 9H), 0.94 (t, J = 7 Hz, 3H). 

 Hydroxy ketone 21 was dissolved in 5 mL dichloromethane, along with 1 mL 

pyridine, 1 mL acetic anhydride, and 20 mg DMAP. The reaction was allowed to stir at 

room temperature overnight before being worked up with NaHCO3 solution, extraction 

with dichloromethane, drying over MgSO4, and concentration. Purification by silica gel 

chromatography (1:1 hexanes/ethyl acetate) produced the desired product as a yellow oil 

(150 mg, 15% yield over 3 steps). 1H NMR (300 MHz, CDCl3): ∂ 5.34, 5.32 (ABq,  J = 6 

Hz, 1H), 5.20,  5.15 (ABq,  J = 6 Hz, 1H), 4.17-4.12 (m, 2H), 2.51-1.91 (m, 10H), 2.14 

(s, 3H), 1.41 (s, 9H), 1.33-1.29 (m, 2H).   

 

 

 

 

 



www.manaraa.com

25 

O

CO2Et

CO2tBuAcO

 

(1S,3S,5R)-ethyl 3-acetoxy-5-(3-(tert-butoxy)-3-oxopropyl)-4-

oxocyclohexanecarboxylate (23) 

 Compound 22 (150 mg, 0.4 mmol) was dissolved in 2 mL of acetonitrile-d3. Two 

drops of diisopropylethylamine were added, and the reaction was stirred at room 

temperature for 5 h, monitoring by proton NMR every hour until it reached an 

equilibrium of peak ratios. The epimerized product 23 was concentrated in vacuo and 

recovered quantitatively (150 mg). 1H NMR (300 MHz, CDCl3): ∂ 5.34, 5.32 (ABq,  J = 

6 Hz, 1H), 5.20,  5.15 (ABq,  J = 6 Hz, 1H), 4.13 (q, J = 6 Hz, 2H), 2.51-2.01 (m, 5H), 

1.91-1.5 (m, 5H), 2.14 (s, 3H), 1.41 (s, 9H), 1.29 (t, J = 6 Hz, 3H). 

 

O

CO2Et

CO2HAcO

 

3-((1R,3S,5S)-3-acetoxy-5-(ethoxycarbonyl)-2-oxocyclohexyl)propanoic acid (24) 

 Compound 23 (150 mg, 0.4 mmol) was dissolved in 5 mL dichloromethane. 0.5 

mL trifluoroacetic acid (TFA) was added, stirring at room temperature for 3 hours. The 

solvent and excess TFA were removed via rotary evaporator and the product purified by 

silica gel chromatography (1:1 hexanes/ethyl acetate) to yield the product as an orange oil 
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(50 mg, 40% yield) 1H NMR (300 MHz, CDCl3): ∂ 5.38, 5.33 (ABq,  J = 6 Hz, 1H), 4.20 

(q, J = 6 Hz, 2H), 2.95-1.94 (m, 10H), 2.15 (s, 3H), 1.27 (t, J = 6 Hz, 3H). 

 

O

CO2Et

AcO
O

O

O

 

(1S,3S,5R)-ethyl 3-acetoxy-5-(3-(furan-3-ylmethoxy)-3-oxopropyl)-4-

oxocyclohexanecarboxylate (25) 

 Compound 24 (50 mg, 0.16 mmol) was dissolved in 3 mL dichloromethane. To 

this was added 3-furanmethanol (17 µL, 0.19 mmol), 39 mg DCC (0.18 mmol), and 

DMAP (39 mg, 0.02 mmol). The reaction mixture was filtered through a pad of Celite to 

remove the precipitated urea byproduct, and concentrated in vacuo. The product was 

purified by preparative TLC (1:1 hexanes/ethyl acetate) as a white solid (10 mg, 16% 

yield). 1H NMR (300 MHz, CDCl3): ∂ 7.46 (s, 1H), 7.39 (s, 1H), 6.41 (s, 1H), 5.33, 5.38 

(ABq,  J = 6 Hz, 1H), 4.97 (s, 2H), 4.23 (q,  J = 6 Hz, 2H), 2.91-1.53 (m, 10H), 2.15 (s, 

3H), 1.25 (t, J = 6 Hz, 3H). 
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O

CO2Et

HO

 

Ethyl 3-hydroxy-4-oxocyclohexanecarboxylate (28) 

 Starting from ethyl cyclohexanone-4-carboxylate (1 mL, 6.2 mmol), a similar 

procedure which was used to prepare compound 21 was utilited (i.e. formation of the enol 

silane via LDA and TMSCl, oxidation using mCPBA, and epoxide ring opening using 

TBAF). Purification of crude product 28 via flash silica gel chromatography (1:1 

hexanes/ethyl acetate) produced the required compound as a yellow oil (266 mg, 23% 

over 3 steps). 1H NMR (300 MHz, CDCl3): ∂ 4.17 (q, J = 6 Hz, 4H), 2.65-2.57 (m, 3H), 

2.49-2.43 (m, 2H), 2.07-2.04 (m, 2H), 1.27 (t, J = 6 Hz, 3H). 

 

O

CO2Et

TBSO

 

Ethyl 3-((tert-butyldimethylsilyl)oxy)-4-oxocyclohexanecarboxylate (29) 

 Compound 28 (200 mg, 1.1 mmol) was dissolved in 5 mL CH2Cl2, where 

imidazole (80 mg, 1.2 mmol) and TBSCl (178 mg, 1.2 mmol) were added, respectively. 

The mixture was allowed to stir at room temperature for 12-16 hours. After aqueous 

workup, the product was purified by flash silica gel chromatography (1:1 hexanes/ethyl 

acetate) to yield product 29 as a yellow oil (322 mg, 100%). 1H NMR (300 MHz, 
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CDCl3): ∂ 4.16 (q, J = 6 Hz, 2H), 2.65-2.61 (m, 2H), 2.44-2.28 (m, 4H), 2.09-2.01 (m, 

2H), 1.27 (t, J = 6 Hz, 3H), 0.9 (s, 9H), 0.06 (s, 6H). 

 

O

CO2Et

O
TBSO H

 

Ethyl 3-((tert-butyldimethylsilyl)oxy)-5-formyl-4-oxocyclohexanecarboxylate (30) 

 Starting material 29 (300 mg, 1.0 mmol) was dissolved in 5 mL dry THF. To this 

was added HCO2Et (0.12 mL, 1.5 mmol) and a 1 M solution of KOtBu in THF (1.1 mL, 

1.1 mmol). The reaction was stirred for 12 hours. After aqueous workup and purification 

by silica gel chromatography (1:1 hexanes/ethyl acetate), pure 30 was produced as a pale 

yellow oil (282 mg, 86% yield). 1H NMR (300 MHz, CDCl3): ∂  8.69 (s, 1H), 4.15 (q, J = 

6 Hz, 2H), 2.71-2.65 (m, 2H), 2.60-2.56 (m, 2H), 2.47-2.44 (m, 2H), 1.24 (t, J = 6 Hz, 

3H), 0.9 (s, 9H), 0.06 (s, 6H).   

 

O HN O

CO2Et

TBSO

 

(Z)-Ethyl 3-((tert-butyldimethylsilyl)oxy)-5-(((furan-3-ylmethyl)amino)methylene)-4-

oxocyclohexanecarboxylate (31) 

 Compound 30 (147 mg, 0.4 mmol) was dissolved in methanol, where furfuryl 

amine (0.06 mL, 0.67 mmol) and a single crystal of PTSA was added, stirring for a 24 
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hour period. The crude product was concentrated in vacuo and purified via silica gel 

chromatography (1:1 hexanes/ethyl acetate) to yield 31 as a pale yellow amorphous solid 

(92 mg, 51% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.35 (s, 1H), 6.31 (s, 1H), 6.13 (s, 

1H), 4.31 (s, 2H), 4.21 (q, J = 6 Hz, 2H), 2.85-2.70 (m, 3H), 2.66-2.5 (m, 3H), 1.30 (t, J 

= 6, 3H), 0.9 (s, 9H), 0.06 (s, 6H). 

 

O HN O

CO2Et

HO

 

(Z)-Ethyl 3-(((furan-2-ylmethyl)amino)methylene)-5-hydroxy-4-

oxocyclohexanecarboxylate (32) 

 Compound 31 (67 mg, 0.16 mmol) was dissolved in 5 mL of a 1:1 mixture of 

THF and pyridine. The reaction flask was cooled to 0ºC in an ice bath and treated with a 

solution of hydrogen fluoride pyridine (~70% HF, 0.08 mL, 2.8 mmol) The reaction was 

warmed to room temperature, where it was stirred for 6 hours. The reaction was worked 

up with a 10% solution of copper sulfate, extracted with ethyl acetate, dried, and 

concentrated. Purification via flash silica gel chromatography (1:1 hexanes/ethyl acetate), 

produced pure alcohol as an amorphous solid (30 mg, 62% yield). 1H NMR (300 MHz, 

CDCl3): ∂ 7.36 (s, 1H), 6.24 (s, 1H), 6.05 (s, 1H), 4.46 (s, 2H), 4.35-4.32 (m, 1H), 4.10-

4.06 (m, 2 H), 2.61-2.50 (m, 2H), 2.17-2.04 (m, 3H), 1.25 (t, J = 6 Hz, 3H).     
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O HN O

CO2Et

AcO

 

(Z)-Ethyl 3-acetoxy-5-(((furan-2-ylmethyl)amino)methylene)-4-

oxocyclohexanecarboxylate (33) 

 In 1 mL of a 1:1 solution of CH2Cl2 and pyridine was dissolved 32 (30 mg, 0.1 

mmol), followed by acetic anhydride (0.02 mL, 0.2 mmol) and 4-dimethylaminopyridine 

(DMAP, 6 mg, 0.05 mmol). The reaction was stirred at room temperature for 12 hours 

before aqueous workup and purification via preparative TLC (1:1 hexanes/ethyl acetate) 

gave product as a white amorphous solid (15 mg, 44% yield). 1H NMR (300 MHz, 

CDCl3): ∂ 1H NMR (300 MHz, CDCl3): ∂ 10.2-10.0 (br, 1H), 7.36 (s, 1H), 6.31 (s, 1H), 

6.22 (s, 1H), 5.28-5.26 (m, 1H), 4.31 (s, 2H), 4.13-4.10 (m, 2H), 2.90-2.74 (m, 3H), 2.59-

2.36 (m, 3H), 2.13 (s, 3H), 1.24 (t, J = 6 H, 3H). 

 

 

O HN O

CO2Et

AcO

 

(1S,3S,Z)-Ethyl 3-acetoxy-5-(((furan-2-ylmethyl)amino)methylene)-4-

oxocyclohexanecarboxylate (26) 

 A similar experimental procedure was used as in the preparation of compound 23. 

1H NMR (300 MHz, CDCl3): ∂ 10.2-10.0 (br, 1H), 7.36 (s, 1H), 6.31 (s, 1H), 6.22 (s, 
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1H), 5.28-5.26 (m, 1H), 4.31 (s, 2H), 4.13-4.10 (m, 2H), 2.90-2.74 (m, 3H), 2.59-2.36 

(m, 3H), 2.13 (s, 3H), 1.24 (t, J = 6 H, 3H). 
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CHAPTER 2. SYNTHESIS OF NEW ANTIMICROBIAL COMPOUNDS 

 

Introduction 

 Piper multiplinervium C. DC. is a climbing shrub in tropical rainforests. It grows 

from Nicaragua to Peru and is used as a treatment for stomach aches by the native people 

of Panama.1 The methanolic leaf extracts were recently isolated and characterized, 

revealing a highly active compound, 3-farnesyl-2-hydroxybenzoic acid (1), the structure 

of which is shown in Figure 1. To date, there are no known chemical preparations of the 

compound. 

 

OH
HO2C

(1)  

Figure 1. Structrure of the natural product from Piper multiplinervium 

 

 Compound 1 is a very potentent antimicrobial agent, showing activity of 100 

µg/mL against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, 

Mycobacterium smegmatis, Klebsiella pneumoniae and Candida albicans.2 It is also 

effective against Helicobacter pylori with a minimum inhibitory concentration (MIC) of 

12.5 µg/mL. Of note is the fact that the compound is effective against Gram-negative 

bacteria, which tend to be resistant to antibiotics due to their outer membrane structure.  
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Because there is considerable interest in the field of antimicrobials, coupled with the 

intriguing activity of this new natural product, the chemical synthsis of 1 was pursued. 

 The retrosynthetic analysis is shown in Figure 2. The carboxylic acid moiety 

could arise from lithium-halogen exchange of an aryl halide, trapping with carbon 

dioxide, and acidification. The farnesyl side chain would likewise arise from a similar 

process (i.e. lithiation of an aryl halide and alkylation using farnesyl bromide as the 

electrophile), leading to the hydroxyl protected 2,6-dibromophenol. To accomplish these 

transformations, the phenol would have to be protected with group R. The R protecting 

group would be chosen so to stabilize an ortho lithium species arising from lithium-

halogen exchange of aryl halides, typically a methoxymethyl (MOM) ether. One 

advantage of this sequence is that, potentially the final carboxylic acid can be acidified 

and the phenol can be deprotected in a single step by aqueous acid, as MOM groups are 

well known to be cleaved under such conditions.3 

 

  

OR
BrBr

OH
HO2C

OR
Br

OH
BrBr

carboxylation +
deprotection

farnesylation

protection

1

 
 
 

Figure 2. Retrosynthetic analysis of 1 
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Results and Discussion 

 
 The first step towards the natural product was to produce the 2,6-dibromophenol. 

The literature has reported the preparation of the ortho-dibromophenol using N-

bromosuccinimide (NBS) and diisopropylamine.4 However the results were 

irreproducible, giving a 3:1 mixture of the desired product and 2,4,6-tribromophenol as 

an inseparable mixture (Scheme 1). Although the desired bis-brominated product 2 is the 

major product in this case, the presence of tris-bromophenol 3 will create difficulties in 

subsequent lithium-halogen exchange reactions. Therefore, commercially available 2,6-

dibromophenol was chosen as the starting material, even though it is fairly expensive 

when compared to the inexpensive phenol.  

 

 

OH

NBS (2 equiv.)
iPr2NH (0.1 equiv.)

CH2Cl2, rt, 1 h
(3:1 bis:tris) BrBr

OH

+ BrBr
OH

Br2
3 	
  

 
Scheme 1. Attempts to prepare 2,6-dibromophenol 

 

 The original synthetic plan involved a methoxymethyl (MOM) protected phenol 

as the ortho-directing group.5 Preparation of farnesylated compound 4 from known 

MOM-protected 2,6-dibromophenol6 proceeded smoothly (Scheme 2). The final step was 

the second lithiation using n-butyllithium, quenching with bubbling gaseous carbon 
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dioxide, acidification of the carboxylate, and cleavage of the MOM ether with dilute 

aqueous hydrochloric acid (1 N HCl). Unfortunately, the reaction was found to be a 

complex mixture upon work up. The theory is that the acid was too harsh and caused the 

phenol to cyclize upon the farensyl group. The side chain has the potential to form 

tertiary cations on the double-bonds on which the phenol could potentially cyclize. 

Because there are three possible tertiary cations that could be produced on the farnesyl 

group, this could help explain why the reaction lead to a complex mixture. 

 Therefore, a similar protecting group was used, one that is more labile and could 

be cleaved by milder conditions. The group would also have to have the ability to 

stabilize ortho lithiation of the aryl bromide in a similar fashion as the MOM group. This 

led to the use of the methoxyethoxymethyl (MEM) protecing group. The advantage of the 

MEM group is that, although it is less stable than the MOM group, it is much more labile 

and can be cleaved through treatment with mild Lewis acids that would otherwise not 

affect MOM-protected ethers.6 The disadvantage would be that it adds another step to the 

synthesis, where the acidifation of the carboxylate and the cleavage of the MEM 

protection group would be two distinct steps.   
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1. n-BuLi
THF, -78 ºC
2. CO2, bubbled, 1 h
3. H3O+

OH
HO2C

1

OMOM
BrBr

OMOM
Br

4

1. n-BuLi (1 equiv.)
-78 ºC, 30 min.

2. farnesyl bromide
72%

	
  

Scheme 2 

 

 Gratifyingly, the MEM protection of 2,6-dibromophenol proceded in quantitative 

yield using the method developed by Corey.7 This masked phenol compound (5 in 

Scheme 3) was treated with n-butyllithium at -78 ºC to give the aryllithium species, 

followed by alkylation with faresyl bromide (freshly prepared from trans, trans-faresol 

and phosphorus tribromide)8 to give compound 6 in 67% yield. The reaction also contains 

traces of the difarnesylated compound, arising from lithium-halogen exchange of both 

bromides within the molecule and subsequent alkylation. However, the product is 

predominantly the required monofarnesylated product and easily separatable via silica gel 

column chromatography.  
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OMEM
BrBr

OMEM
Br

OH
BrBr

MEMCl (3 equiv.)
iPr2NEt (5 equiv.)
CH2Cl2, rt, 16 h

100%

1. n-BuLi
THF, -78 ºC
2. farnesyl bromide
67%

2 5

6 	
  
 

Scheme 3    

 
 

 With the required compound in hand, the final steps of the synthesis were 

achieved (Scheme 4). Lithium-halogen exchange on 6 was done using n-butyllithium, 

and the resulting anion was trapped by bubbling carbon dioxide. After acidification with 

acetic acid, the crude product 7 was taken to the deprotection step over zinc dibromide 

(prepared from 1,2-dibromoethane and zinc metal)9 to give the natural product in 

moderate yield over two steps. 
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OMEM
Br

1. n-BuLi
THF, -78 ºC

2. CO2, bubbled 1 h
3. HOAc

OMEM
HO2C

OH
HO2C

ZnBr2 (10 equiv.)
THF, reflux
overnight
45% (2 steps)

6
7

1
	
  

 
Scheme 4 

 

 With the natural product in hand, we looked toward the scope this chemistry by 

synthesizing some analogues to the natural product. The first modification was to change 

the farnesyl group (C15) to the smaller, but similar geranyl (C10) and prenyl (C5) groups 

(8 and 9 in Figure 3, respectively) in order to probe the structure-function relationship of 

the side-chain on the salicylic acid. Presumably, the prenyl and geranyl compounds 

would have similar activity as the natural product due to their similarity to the 

farnesylated compound, as they are expected to arise from the common prenyl subunit. 

Surprisingly, neither of these compounds are known in the chemical literature, so their 

preparation would also represent the first known synthesis of compounds of this type.  
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OH
HO2C

(1)

OH
HO2C

(8)

OH
HO2C

(9)  

Figure 3. Natural product 1 and its proposed analogues 

 

  

 The preparation of 3-geranyl salicylic acid 7 utilized the same method as the one 

used to prepare 1 (Scheme 5). Lithiation of MEM-protected 2,6-dibromophenol 4 using 

n-butyllithium, followed by alkylation with geranyl bromide, cleanly produced 

monoalkylated product 10. A second lithiation and carboxylation using carbon dioxide 

produced crude 11, which was deprotected with zinc bromide to produce the desired 

product 8 in 74% yield over a two-step sequence. 
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OMEM
BrBr

1. n-BuLi
THF, -78 ºC

2. geranyl bromide
83%

4

OMEM
Br

10

1. n-BuLi
THF, -78 ºC
2. CO2, bubbled, 1 h
3. HOAc

ZnBr2 (10 equiv.)
THF, reflux
overnight

74% (2 steps)

OMEM
HO2C

11

OH
HO2C

8  

Scheme 5 

 

 Several different methods were explored to produce the simplest prenylated 

salicyclic acid 9. This is in part due to the expense and difficulties of purification of 2,6-

dibromophenol, which would make preparation of large amounts of material impractical. 

The first idea considered started from simple phenol, which is readily available, 

inexpensive, and can be selectively C-prenylated via a literature procedure11 (the 

retrosynthetic analysis is shown in Figure 4). The final step would be carboxylation under 

Kolbe-Schmitt conditions.12 
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OH
HO2C

OH OH

9 12  
 

Figure 4 
 

 
 The C-prenylation of phenol proceded as shown in Scheme 6. The choice of metal 

counteranion and solvent is critical in this case. Ideal conditions involved an excess of 

sodium hydride in toluene. The use of more polar solvents (e.g. THF) leads to primarily 

O-prenylation. The reaction produced the required product 12, albeit in low yield. 

 

 

OH

prenyl bromide (1.5 equiv.)
NaH (2.2 equiv.)

toluene
60 ºC to rt, 24 h

35%

OH

12 	
  
 

Scheme 6 

 

The next step of the sequence required Kolbe-Schmitt conditons (Scheme 7). The 

sodium salt of the prenylated phenol was made by treating 12 with metallic sodium, 

where it was heated in an autoclave under high carbon dioxide pressure. However, upon 

acidification it was clear there was no reaction, as only starting material was recovered.  

 

 



www.manaraa.com

43 

OH
HO2C

ONa

1. CO2 (200 psi)
140 ºC, 13 h

neat
2. HCl

913 	
  
Scheme 7 

 

 Due to the failure of the carboxylation pathway, the synthetic strategy was 

modified. Starting from commercially-available coumarin (Figure 5), 2,2-dimethyl 

chromene (15) can be made in two steps following a known procedure.13 The remaining 

oxygen atom can then act as a directing group for directed ortho metalation, and trapping 

with carbon dioxide, giving aromatic acid 14. Finally, opening of the C5 ring under 

acidic conditions would produce desired prenylated salicylic acid 9.       

 

 

OH
HO2C

O O

O

9 14

O
HO2C

15  
 

Figure 5 

 

 Preparation of 15 from coumarin proceeded without complications. However, 

metalation and subsequent carboxylation failed (Scheme 8), giving only recovered 

starting material. This may be due to the fact that the oxygen from the phenol may not be 
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as strongly directing towards ortho lithiation as other functional groups (i.e. a MEM-

protected phenol) and thus would lead to difficulties in the required lithium-hydrogen 

exchange step.   

 

O

14

O
HO2C

15

1. n-BuLi
THF, -78 ºC

30 min.
2. CO2, gas

1 h
3. H3O+

	
  

Scheme 8 

 

 The next idea for the preparation of prenylated salicylic acid is shown in Figure 6. 

It was envisioned that product 9 would arise in a similar fashion as in Figure 5, that is, 

from hydrolysis and ring opening of 16. This compound would in turn arise from 

prenylation of the very common methyl salicylate and isoprene, which follows a similar 

procedure for the prenylation of phenols.11  The reaction uses an acidic resin catalyst, 

Amberlyst 15, to form dimethylchromans from phenols.  

 

OH
HO2C

O
MeO2C

OH
MeO2C

+

9 16  
 

Figure 6 
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 Unfortunately, the preparation of 16 failed, only giving recovered methyl 

salicylate. The reason for this is that the prenylation conditions described in the literature 

were used on aromatic rings with at least two phenol moieties (i.e. either phloroglucinol, 

hydroquinone or resorcinol derivatives). This makes the aromatic ring more electron-rich 

and likely to undergo substitution from electrophiles. Methy salicylate, however, only has 

a single phenol activating group, as well as the methyl ester, making it relatively electron-

poor and thus less reactive under these conditions.   

 The final route towards the prenylated salicylate is shown in Scheme 9. Starting 

wih methyl salicylcate, 1,1-dimethyl-2-propynyl methyl carbonate (prepared from the 

corresponding alcohol and methyl chloroformate)14 is coupled with a copper catalyst15 to 

give 18 in fair yields. The resulting alkyne was catalytically semi-hydrogenated over 

Lindlar catalyst16 to give alkene 19. This O-prenylated compound then underwent 

thermal Claisen Rearrangement to give the C-prenylated product 20 in good yield. 

Simple hydrolysis and acidification of the methyl ester produced the corresponding 

prenylated salicylic acid 9, with an overall yield is 10% over 4 steps.  
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MeO2C
OH

O CO2Me

CuCl2.H2O (5%)
DBU (1.3 equiv.)
MeCN, 0 ºC to rt

12-16 h
37%

MeO2C
O

H2
Lindlar cat (20%)

quinoline
EtOAc, rt, 4 h

47%
MeO2C

O

toluene
reflux, 24 h
84%

MeO2C
OH

1. NaOH
1:1 dioxane/H2O

2. H3O+

68%
HO2C

OH

9

(17)

18 19

20 	
  
 

Scheme 9 

  

 With the simple prenylated salicylic acid in hand, the next step was to analyze 

different 3-alkyl-substituted salicylic acid derivatives to find the smallest possible group 

that could possibly have antimicrobial activity as well. The rationale was if the prenyl 

group was active, perhaps even smaller carbon-numbered side chains could also have 

activity. The simplest carbon chain would be a methyl group, which would correspond to 

commercially available 3-methylsalicylic acid. Unfortunately, that compound showed 

none of the desired antimicrobial activity. 

 3-Allylsalicylic acid was prepared in order to compare the replacement of the 

prenyl side chain with an allyl side chain. The advantage of this compound is that it is 

structurally analoguous to the prenyl group and thus could be synthesized in a similar 

manner. Likewise, the similarity could also lead to a similar activity. 
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 The synthesis follows a similar route as the prenylated salicylate (i.e. O-allylation 

followed by thermal Claisen Rearrangement to give C-allylation). Allylation of salicylic 

acid with an excess of allyl bromide produced the bis allylated compound 21 (Scheme 

10).17 Hydrolysis of the ester with sodium hydroxide produced O-allylated salicylic acid 

22, which underwent clean thermal electrocyclic rearrangement to produce the target 

compound 3-allylsalicylic acid 23. 

 

OH
HO2C

allyl bromide (2.5 equiv.)
K2CO3

 (2.5 equiv.)
acetone, reflux 24 h

83%

O

O

O

1. NaOH
EtOH (90%)

reflux, overnight
2. HCl
43%

O
HO2C

toluene
200 ºC
sealed tube
84%

OH
HO2C

21 22

23 	
  
Scheme 10 

 

 Compound 23 was tested and it was not found to have any required antimicrobial 

activity. Therefore, one can conclude that the prenyl group is the mininum group 

necessary for the compound to have any desired activity. Currently, the mechanism of 

action of the within cells is being tested. 
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 The various functionalized salicylic acids prepared, including the C15, C10, and 

C5 compounds were tested by Dr. Gregory Phillips at Iowa State University for 

antimicrobial activity using a disc diffusion assay as shown in Figure 7. The bacteria 

(either E. coli or S. typhimurium) were grown in top agar, filter discs are placed in the 

center of nutrient agar plates.  

 

 

Figure 7. Disc assay to measure zone of inhibition of compounds 

 

 Zones of inhibition were measured and reported as mm in Figure 8. Not 

unexpectedly, the simple salicylic acid and methyl salicylic acid showed no activity, as 

evidenced by a zone of inhibition of zero (columns A and B, respectively). The 

synthesized C15 natural product was tested and had the required activity. The C10 

geranyl functionalized compound had a zone of inhibition of 6 mm (column F). 

Interestingly, the C5 compound had the highest activity, with a zone of inhibition of 15 

mm (column E). Known antibiotics amicillin and chloramphenicol are represented in 

columns H and I, respectively. Oddly, the C15 compound (which had identical spectra to 

the previous samples) showed no activity upon scale-up (column G). 
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Figure 8. Results of zone of inhibition measurements.  Compounds tested include: A. 

salicylate; B. salicylate+C1; C. salicylate+C3; D. salicylate+O-C3; E. salicylate+C5; F. 

salicylate+C10; G. salicylate+C15; H. ampicillin; I. chloramphenicol; J. DMSO (solvent 

control); K. H2O (solvent control).  Salicylate derivatives and antibiotics were applied at 

a concentration of ~50 µg/µl.  Shown are the results with E. coli, with similar results 

obtained for compound E and controls with S. enterica. 

 

 

 This project represents the first known preparation of the natural product 3-

farnesylsalicylic acid 1 from 2,6-dibromophenol through a 4-step sequence with a 29% 

overall yield. Additionally, the the first synthesis of 3-geranyl and 3-prenyl salicylic acids 

were achieved in over a 3-4 step sequence with good overall yields. Both products had 

similar antimicrobial activity as described for the natural product, with the C5 prenyl 

having the greatest activity overall. The 3-allylsalicylic acid derivative was prepared as 

well, but did not have any biological activity, thus proving that the prenyl subunit is  
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absolutely required for activity. Future work involves further biological assays in order to 

determine the mode of activity within the cell. Additionally, different side chains are also 

being considered, including fully hydrogenated prenyl units. 

 

Experimental 

 Unless otherwise noted, materials were obtained from commercial suppliers and 

used without purification. Tetrahydrofuran was distilled from sodium and benzophenone. 

Dichloromethane and toluene was dried over calcium hydride prior to use. All 

experiments were performed under an argon atmosphere unless otherwise noted. Organic 

extracts were dried over anhydrous magnesium sulfate. Nuclear magnetic 

resonance experiments were performed with either a Varian 300 MHz or Bruker 400 

MHz instrument. All chemical shifts are reported relative to CDCl3 (7.27 ppm for 1H and 

77.23 ppm for 13C), unless otherwise noted. Coupling constants (J) are reported in Hz 

with abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = 

broad singlet. High resolution mass spectra were recorded on a Kratos model MS-50 

spectrometer. Standard grade silica gel (60 Å, 32-63 µm) was used for flash column 

chromatography. 
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BrBr
OH

 

2,6-Dibromophenol (2) 

 Phenol (189 mg, 2.0 mmol) and diisopropylamine (0.55 mL, 3.9 mmol) were 

dissolved in 5 mL of dry CH2Cl2. Freshly recrystalized NBS (718 mg, 4.0 mmol) was 

carefully added to the solution in portions, were it was allowed to stir for 1 hour. After 

quenching with concentrated sulfuric acid, the product was extracted with CH2Cl2, dried 

over MgSO4, concentrated, purified through silica gel chromatography (2:1 hexanes/ethyl 

acetate) to produce a inseparable mixture (3:1 by 1H NMR peak integration) of 2,6-

dibromophenol and 2,4,6-dibromophenol as a white solid (401 mg). 1H NMR (300 MHz, 

CDCl3): ∂ 7.59 (s, 2H), 7.44 (d, 2H), 6.70 (t, 1H), 5.88 (1H). 

 

OMOM
Br

 

1-Bromo-2-(methoxymethoxy)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-

yl)benzene (4) 

 MOM-protected 2,6-dibromophenol (284 mg, 1.0 mmol) was dissolved in THF at 

-78 ºC. This was treated with a 2.5 M solution of n-butyllithium in hexanes (0.38 mL, 1.0 

mmol), and the reaction mixture was stirred at -78 ºC for 30 minutes. A solution of 

freshly-prepared farnesyl bromide (274 mg, 1.0 mmol, made by treatment of farnesyl 

alcohol with PBr3) in 5 mL THF was added, and the solution was stirred for a 12-16 hour 

period, warming to room temperature. After aqueous workup, the crude product was  
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purified by flash silica gel chromatography (10:1 hexanes/ethyl acetate) to yield pure 4 as 

yellow oil (292 mg, 72% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.40 (d, J = 6 Hz, 1H), 

7.13 (d, J = 6 Hz, 1H), 6.93 (t, J = 6 Hz, 1H), 5.31 (t, J = 6 Hz, 1H), 5.17-5.09 (m, 2H), 

5.09 (s, 2H), 3.65 (s, 3H), 3.46 (d, J = 6 Hz, 2H), 2.13-1.97 (m, 4H), 1.70 (s, 3H), 1.68 (s, 

3H), 1.60 (s, 6H).    

 

OMEM
BrBr

 

1,3-Dibromo-2-((2-methoxyethoxy)methoxy)benzene  (5) 

 In an oven-dried flask under argon, 2,6-dibromophenol (253 mg, 1.0 mmol) was 

dissolved in 10 mL dry CH2Cl2.  To this were added diisopropylethylamine (0.87 mL, 5.0 

mmol, 5 equiv.) and MEMCl (0.35 mL, 3.1 mmol, 3 equiv), respectively.  The mixture 

was allowed to stir at room temperature overnight, where it was worked up with saturated 

NaHCO3 (5 mL), extracted with dichloromethane, and dried over MgSO4.  Purfication by 

silica gel chromatography  (4:1 hexanes/ethyl acetate) yielded pure protected phenol 5 as 

a yellow liquid (342 mg, 100% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.52 (d, J = 9.0 

Hz, 2H), 6.88 (t, J = 9.0 Hz, 1H), 5.27 (s, 2H), 4.11 (t, J = 6.0 Hz, 2H), 3.64 (t,  J = 6.0 

Hz), 3.40 (s, 3H); 13C NMR (75 MHz, CDCl3): ∂ 59.3, 70.1, 71.9, 98.5, 118.7, 126.8, 

133.1, 151.6; HRMS (EI) m/z exact mass calculated for C10H12Br2O3 339.9153, found 

339.9160. 
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OMEM
Br

 

1-Bromo-2-((2-methoxyethoxy)methoxy)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-

trien-1-yl)benzene (6).   

 Compound 5 (342 mg, 1.0 mmol) was dissolved in dry THF (10 mL) under argon 

at -78 ºC (dry ice/acetone).  To this was carefully added a solution of n-BuLi (0.4 mL, 

2.5M in hexanes, 1.0 mmol) and the reaction was allowed to stir at -78 ºC for 30 minutes.  

The reaction mixture was treated with a solution of freshly-prepared farnesyl bromide 

(290 mg, 1.0 mmol) in 5 mL THF.  The reaction was allowed to warm to room 

temperature with stirring for 12 hours.  After aqueous work up, purification of the crude 

product via silica gel chromatography (4:1 hexanes/ethyl acetate) yielded compound 6 as 

a yellow oil (313 mg, 67% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.38 (d, J = 6.0 Hz, 

1H), 7.11 (d, J = 6.0 Hz, 1H), 6.92 (t, J = 6.0 Hz, 1H), 5.31-5.26 (m,1H), 5.17 (s, 2H), 

5.13-5.06 (m, 2H), 4.01 (t, J = 6.0 Hz, 2H), 3.61 (t, J = 6.0 Hz, 2H), 3.46, 3.40 (s, 3H), 

2.2-1.8 (m), 1.67, 1.59; 13C NMR (75 MHz, CDCl3): ∂ 16.3, 16.4, 18.0, 26.0, 26.7, 27.0, 

29.0, 39.5, 39.9, 59.3, 69.7, 71.9, 98.8, 116.4, 118.4, 123.3, 124.5, 125.9, 128.7, 129.3, 

131.3, 133.6, 135.4, 137.6, 152.6; HRMS (EI) m/z exact mass calculated for C25H37BrO3 

464.1926, found 464.1938. 
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OMEM
HO2C

 

2-((2-Methoxyethoxy)methoxy)-3-((2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-

yl)benzoic acid (7) 

 Starting material 6 (220 mg, 0.47 mmol) was dissolved in THF at -78 ºC. To this 

was added a 2.5 M solution of n-butyllithium in hexanes (0.19 mL, 0.48 mmol), stirring 

at -78 ºC for 30 minutes. Gaseous carbon dioxide was bubbled through solution for 1 

hour, during which time the reaction flask was warmed to room temperature. The 

reaction was quenched with HOAc and concentrated, and the crude product 7 was taken 

to the next step without further purification.     

 

OH
HO2C

 

3-Farnesyl-2-hydroxybenzoic acid (1) 

 A solution of the 7 in THF was added to a solution of freshly prepared ZnBr2 

(shown below) and the mixture was  stirred at room temperature overnight. The reaction 

was worked up with H2O, extracted with ether, dried over MgSO4, and purified by 

column chromatography (1:2 hexanes/ethyl acetate) to yield 1 as a white solid (72 mg, 

45% yield over 2 steps). 1H and 13C NMR spectra correspond to those of the natural 

product.2 HRMS (EI) m/z exact mass calculated for C22H30O3 342.2195, found 342.2201. 

 Preparation of ZnBr2: oven-dried zinc powder (346 mg, 5.3 mmol, 10 equiv.) was 

suspended in 10 mL dry THF.  To this was added 1,2-dibromoethane (0.45 mL, 5.2  
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mmol, 11 equiv.) and the solution was heated to reflux overnight, during which time the 

color turned cloudy white. 

 

OMEM
Br

 

(E)-1-Bromo-3-(3,7-dimethylocta-2,6-dien-1-yl)-2-((2-

methoxyethoxy)methoxy)benzene (10) 

 Compound 5 (315 mg, 0.93 mmol) in THF was treaded with 2.5M n-BuLi (0.37 

mL, 0.93 mmol) at -78 ºC for 30 minutes.  The resultant mixture was treated with  a THF 

solution of freshly prepared geranyl bromide (245 mg, 1.1 mmol, made from geraniol and 

PBr3) and stirred overnight.  The reaction was worked up with aqueous NH4Cl, extracted 

with ether, dried over MgSO4, and purified by flash column chromatography to yield 10 

as a yellow oil (304 mg, 83% yield).  1H NMR (300 MHz, CDCl3): ∂ 7.49 (d, J = 6.0 Hz, 

1H), 7.11 (d, J = 6.0 Hz, 1 H), 6.93 (t, J = 6.0 Hz, 1H), 5.30 (m, 1H), 5.18 (s, 2H), 5.10 

(m, 1H), 4.02 (t, 2H), 3.62 (t, 2H), 3.46 (d, 2H), 3.40 (s, 3H), 2.10-2.05 (m, 4H),1.68 

(6H), 1.60 (3H); 13C NMR (75 MHz, CDCl3): ∂ 16.4, 18.0, 26.0, 26.8, 29.0, 39.9, 59.3, 

69.7, 71.9, 98.8, 117.6, 122.2, 124.4, 125.9, 129.3, 131.3, 131.8, 133.6, 137.3, 152.6; 

HRMS (EI) m/z exact mass calculated for C20H29BrO3 396.1300, found 396.1308. 
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OMEM
HO2C

 

(E)-1-Bromo-3-(3,7-dimethylocta-2,6-dien-1-yl)-2-((2-

methoxyethoxy)methoxy)benzene (11)  

 Compound 10 (304 mg, 0.77 mmol) was dissolved in 10 mL dry THF at -78 ºC, 

where it was treated with 2.5M n-BuLi (0.31 mL, 0.78 mmol) for 30 minutes.  Carbon 

dioxide gas was bubbled through solution and warmed to room temp for a 2 hour period.  

The reaction was worked up with acetic acid and concentrated.  The crude product 11 

was used in the next step without further purification. 

 

OH
HO2C

 

 (E)-3-(3,7-Dimethylocta-2,6-dien-1-yl)-2-hydroxybenzoic acid (8)   

 Preparation of 8 was done in a similar fashion as in the preparation of 1. The 

starting material was added to a solution of zinc bromide in THF, stirring at room 

tempertature overnight.  The reaction was worked up with H2O, extracted with ether, 

dried over MgSO4, and purified by column chromatography (1:1 hexanes/ethyl acetate)to 

yield 8 as an off-white solid (155 mg, 74% yield over 2 steps). 1H NMR (300 MHz, 

CDCl3): ∂ 10.72 (br, OH), 8.02 (d, J = 6.0 Hz, 1H), 7.38 (d, J = 6.0 Hz), 7.03 (t, J = 6.0, 

1H), 5.31-5.29 (m, 1H), 5.12-5.09 (m, 1H), 3.51 (d, 2H), 2.03-1.96 (m, 4H), 1.68 (s, 6H), 

1.60 (s, 3H). 13C NMR (75 MHz, CDCl3): ∂ 19.9, 23.1, 32.0, 39.8, 41.2, 47.8, 116.0, 

119.7, 121.6, 124.2, 131.2, 132.0, 136.0, 136.8, 153.1, 169.5; HRMS (EI) m/z exact mass  
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calculated for C17H22O3 274.1569, found 274.1575. 

 

OH

 

2-(3-Methylbut-2-en-1-yl)phenol (12) 

 A suspension of NaH (469 mg, 11.7 mmol, 60% in parafin oil) was made in 

toluene. A solution of phenol (500 mg, 5.3 mmol) in 5 mL toluene was added slowly and 

carefully to the suspension, where gas began to evolve. The mixture was heated to 60 ºC 

for 30 minutes before cooling to room temperature and treated with prenyl bromide (0.92 

mL, 8.0 mmol). The reaction was stirred at room temperuture for 24 hours before 

aqueous workup. Purification by silica gel chromatography (15:1 hexanes/ethyl acetate) 

produced 12 as a yellow liquid (306 mg, 35% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.09 

(d, 1H), 6.89-6.79 (m, 3H), 5.32 (t, J = 6 Hz, 1H), 3.36 (d, J = 6 Hz, 2H), 1.78 (s, 6H).   

 

 

MeO2C
O

 

Methyl 2-((2-methylbut-3-yn-2-yl)oxy)benzoate (18) 

 Methyl salicylate (1.46 mL, 11.1 mmol) was dissolved in 10 mL acetonitrile at 0 

ºC. To this was added a solution of 17 in 5 mL acetonitrile (1.738 g, 12.2 mmol), 1,8-

diazabicycloundec-7-ene (DBU, 2.2 mL, 14,7 mmol), and copper(II) chloride dihydrate  
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(96 mg, 0.6 mmol), respectively. The reaction mixture was warmed to room temperature, 

stirring for 12 hours. After aqueous work up, the product was purified by silica gel 

chromatography (10:1 hexanes/ethyl acetate) to yield pure 18 as a white solid (890 mg, 

37% yield). 1H NMR (300 MHz, CDCl3): ∂ 7.77 (d, J = 6 Hz, 1H), 7.56 (d, J = 6 Hz, 

1H), 7.43 (t, J = 6 Hz, 1H), 7.11 (t, J = 6 Hz, 1H), 3.88 (s, 3H), 2.56 (s, 1H), 1.67 (s, 6H). 

13C NMR (75 MHz, CDCl3): ∂ 29.6, 52.1, 74.6, 82.1, 86.2, 122.5, 123.1, 125.7, 131.4, 

132.6, 155.3, 166.6. HRMS (EI) m/z exact mass calculated for C13H14O3 218.0943, found 

219.1016 (MH+). 

MeO2C
O

 

Methyl 2-((2-methylbut-3-en-2-yl)oxy)benzoate (19) 

 Compound 18 (860 mg, 3.9 mmol) was dissolved in 4 mL of ethyl acetate in a 

three-necked flask. To this was added Lindlar catalyst (180 mg) and quinoline (0.25 mL, 

2.1 mmol). The flask was placed under a hydrogen gas atmosphere, and the reaction 

stirred for 4 hours. The solution was filtered through a pad of Celite to remove the 

catalyst, where the filtrate was concentrated. Purification via silica gel chromatography 

(10:1 hexanes/ethyl acetate) to yield pure 19 as a translucient oil (400 mg, 46% yield). 1H 

NMR (300 MHz, CDCl3): ∂ 7.70 (d, J = 6 Hz, 1H), 7.31 (t, J = 6Hz, 1H), 7.13 (d, J = 6  

Hz, 1H), 7.01 (t, J = 6 Hz, 1H), 5.16 (dd, J = 18 Hz, 1H, J = 7 Hz, 2H), 3.88 (s, 3H), 1.48 

(s, 6H).  
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MeO2C
OH

 

Methyl 2-hydroxy-3-(3-methylbut-2-en-1-yl)benzoate (20) 

 Compound 19 (400 mg, 1.8 mmol) was boiled in toluene (12 mL) for a 24 hour 

period. The product was concentrated and purified via silica gel chromatography (10:1 

hexanes/ethyl acetate) to give 20 as a yellowish oil (336 mg, 84%). 1H NMR (300 MHz, 

CDCl3): ∂ 7.79 (d, J = 6 Hz, 1H), 7.44 (t, J = 6 Hz, 1H), 6.98 (d, J = 6 Hz, 1H), 5.50 (t, J 

= 6 Hz, 1H), 4.62 (d, J = 6Hz, 2H), 3.88 (s, 3H), 1.78 (s, 3H), 1.74 (s, 3H). 

 

HO2C
OH

 

3-Prenylsalicylic acid (9) 

 Starting material 20 (293 mg, 1.3 mmol) was dissolved in 5 mL of a 1:1 mixture 

of dioxane and water. Solid NaOH (235 mg, 5.9 mmol) was added and the solution was 

heated to reflux. After 3 hours, the reaction was cooled to room temperature and 

quenched with 1.5 mL a 4 N solution of HCl. The product was extracted with ethyl 

acetate, dried over MgSO4, and concentrated. Purification through silica gel 

chromatography (1:1 hexanes/ethyl acetate) produced pure 9 as an orange solid (187 mg, 

68% yield). 1H NMR (300 MHz, CDCl3): ∂ 10.71 (s, 1H), 7.78 (d, J = 6Hz, 1H), 7.39 (d, 

J = 6 Hz, 1H), 6.86 (t, J = 6 Hz, 1H), 5.32 (t, J = 6 Hz, 1H), 3.38 (d, J = 6 Hz, 2H), 1.76 

(s, 3H), 1.72 (s, 3H). 13C NMR (75 MHz, CDCl3): ∂ 18.0, 23.6, 26.0, 115.8, 117.6, 119.1, 

121.9, 123.9, 132.1, 133.5, 148.7, 161.4.  HRMS (EI) m/z exact mass calculated for  
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C12H14O3 206.0943, found 206.0940. 

 

O

O

O

 

Allyl 2-(allyloxy)benzoate (21) 

 Salicylic acid (501 mg, 3.6 mmol), allyl bromide (0.8 mL, 9.2 mmol), and K2CO3 

(1.267 g, 9.2 mmol) were dissolved in acetone. The mixture was boiled to reflux for 24 

hours. Aqueous workup and purification by flash silica gel chromatography (4:1 

hexanes/ethyl aetate) produced pure 21 (657 mg, 83% yield). 1H NMR (300 MHz, 

CDCl3): ∂ 7.84 (d, J = 6 Hz, 1H), 7.44 (t, J = 6 Hz, 1H), 6.98 (t, J = 6 Hz, 1H), 6.96 (d, J 

= 6 Hz, 1H), 6.12-5.97 (m, 4H), 5.48 (dd, J = 18 Hz, 2H), 5.28 (dd, J = 6 Hz, 2H), 4.81 

(d, J = 6 Hz, 2H), 4.63 (d, J = 6 Hz, 2H). 

 

O
HO2C

 

2-(Allyloxy)benzoic acid (22) 

 21 (657 mg, 3.0 mmol) was dissolved in 7 mL anhydrous ethanol. NaOH (492 

mg, 12.3 mmol) was added, and the reaction mixture was stirred for 12-16 hours. After 

acidification with 4 N HCl, extratction with CH2Cl2, drying, concentration, and 

purification by recrystalization produced compound 22 as a light yellow solid (230 mg,  
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43%). 1H NMR (300 MHz, CDCl3): ∂ 10.48 (s, 1H), 8.20 (d, J = 6 Hz, 1H), 7.53 (t, J = 6 

Hz, 1H), 7.15 (t, J = 6 Hz, 1H), 7.05 (d, J = 6 Hz, 1H), 6.15-6.04 (m, 1H), 5.46 (dd, J = 

18 Hz, J = 7 Hz, 2H), 4.80 (d, J = 6 Hz, 2H). 

 

OH
HO2C

 

3-Allyl-2-hydroxybenzoic acid (23) 

 The O-allylated compound 22 (230 mg, 1.3 mmol) was dissolved toluene in a 

thick glass sealable tube with a screw cap. The reaction vessel was heated to 200 ºC in an 

oil bath for 8 hours. The product was concentrated and purified by flash silica gel 

chromatography (1:1 hexanes/ethyl acetate) to yield pure 23 (194 mg, 84% yield). 1H 

NMR (300 MHz, CDCl3): ∂ 10.97-10.52 (br, 2H), 7.82 (d, J = 6 Hz, 1H), 7.39 (d, J = 6 

Hz, 1H), 6.88 (t, J = 6 Hz, 1H), 6.05-5.96 (m, 1H), 5.11 (dd, J = 17 Hz, J = 7 Hz, 2H), 

3.44 (d, J = 3Hz, 2H). 
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CHAPTER 3. PREPARATION OF ALPHA OLEFINS FROM FATTY ACIDS 
 
 

Introduction 

 Alpha olefins are a class of compounds that consist of an alkene at the terminal 

end of an alkyl chain with a typical structure as shown in Figure 1. The market for alpha 

olefins is approximately 2.5 million tons per year, and they are used in detergents, 

surfactants and specialty chemicals. Likewise, short chain linear alpha olefins are 

commonly used as monomers in the preparation of polyethylene.  

 

!

"

 

Figure 1. Structure of an alpha olefin 

 

 The most common method of preparing linear alpha olefins industrially is 

oligomerization of ethylene,1 which comes from petroleum cracking.2 Of note is that only 

even carbon-numbered alpha olefins can be made through this process as it involves the 

joining of a series of C2 carbon units. Other preparations of alpha olefins include 

dehydration of alcohols3 and thermal cracking of waxes.4 Unfortunately, there are few 

biorenewable-based counterparts for alpha olefins, as terminal olefins are not common 

components in biomass. 

 In contrast to ethylene, fatty acids are common components of plant material. 

Typical biobased sources of fatty acids are corn oil, palm oil, and soybean oil. Owing to 

the demand of alpha olefins, it is clear that new, renewable methods of production need 

to be explored. Biological engineers at the Center for Biorenewable Chemicals (CBiRC) 
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at Iowa State University have designed strains of microbes that can produce large 

amounts of fatty acids. Thus, the main goal of this project is to find a method of 

converting these biologically-derived fatty acids into alpha olefins with as high yields as 

possible. Additionally, the process must utilize inxpensive reagents in order to be 

economically viable. Although there is interest in biobased preparations of commodity 

chemicals, one must always keep in mind that the process should be cost effective as 

well.  

 

Results and Discussion 

 The first attempt to synthesize olefins was based on the work of Gooßen,5 the 

general form is shown in Scheme 1. Palladium chloride is the catalyst and bis-(2-

diphenylphosphinophenyl)ether (DPE-Phos) 3 is the ligand. The use of an anhydride 

activator is essential, typically pivalic anhydride. The reaction produces an olefin of one 

less carbon atom than the starting acid, and thus procedes with loss of either carbon 

dioxide or carbon monoxide.  

 

CO2H
10

2 equiv. Piv2O
PdCl2 (3%)

DPE-Phos (9%)
DMPU

120 ºC, 12 h
80% 8

O
PPh2 PPh2

DPE-Phos
(3)1 2

 
 

Scheme 1. Gooßen preparation of alpha-olefins 
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 The proposed mechanism of this reaction by Gooßen is shown in Figure 2.6 First, 

starting acid 1  forms a mixed anhydride with pivalic anhydride (compound 5 where R' is 

a tert-butyl group). Palladium then oxidatively inserts into the anhydride C-O bond on the 

side away from the R' group to form the aceyl-palladium species 6. Carbon monoxide is 

eliminated, which was confirmed via experiment (i.e. collection and IR analysis of the 

evolved gas). The resulting alkyl palladium 7 rapidly undergoes beta-hydride 

elimination7 to give alkene 2. The palladium catalyst is reformed and the catalytic cycle 

begins again.  

 The rate-limiting step in the reaction is the loss of carbon monoxide from the 

acyl-palladium species, which is a difficult process. Although carbonylation of palladium 

species is fairly well known,8 the reverse process is not as common. The elevated 

temperature is required to overcome the energetic barrier of the step. The use of pivalic 

anhydride directs the oxidative addition through steric bulk, where palladium inserts in 

the side of the mixed anhydride to minimize steric hindrance. In this case, the catalyst is 

directed away from the bulky tert-butyl group, which is the desired position for further 

chemistry. Insertion into the other anhydride bond would be nonproductive. Therefore, 

this process could be considered an equilibrium, where only one species is able to 

proceed forward.  
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Figure 2. Gooßen's proposed mechanism 

 

  This reaction proved to be readily reproducible on a laboratory scale (1-2 g) with 

typical yields around 80%. However, there are several limitations that prevent it from 

being feasible on a larger scale. First, it requires the use of an uncommon and expensive 

ligand. Other, more common ligands were screened, such as triphenylphosphine, and 

were not found to be as effective as DPE-Phos. The loading is high (3 equivalents of 

ligand relative to catalyst), which also would increase the cost industrially.  

 Second, the necessity of pivalic anhydride activator would be expensive upon 

scale-up. Relative to other anhydrides (e.g. acetic anhydride, butyric anhydride), pivalic  
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anhydride is more expensive. As a test, the reaction was attempted on a 1 gram scale with 

acetic anhydride as the activator, but the yield was only around 50%, thus verifying the 

necessity of pivalic anhydride on this reaction.  

 The reaction mixture must be heated for long time periods in order to achieve 

high conversions. A typical experiment requires a temperature of 120 ºC for 12-16 hours, 

which represents a large input of energy. This sustained heating may not be economically 

feasible on larger scales and is another disadvantage. 

 The solvent, 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (DMPU), is 

also problematic to the reaction. It has a high boiling point and a high polarity required to 

help solubilize the palladium species. Once the reaction is complete, it is necessary to 

separate the products from the solvent, typically done in the laboratory via silica gel 

chromatography. On an industrial scale, solvent recovery would be critical, as DMPU is 

an uncommon and expensive solvent relative to other organic solvents. 

 With these difficulties in mind, other methods to synthesize alpha olefins were 

considered. This led to the work of Miller,9 which follows a similar decarboxylative 

preparation of alpha olefins from fatty acids (Scheme 2). The reaction uses an anhydride 

as an activator, palladium, triphenylphosphine ligand, and high temperatures (greater than 

200 ºC). The alpha-olefin product is distilled in order to prevent isomerization via 

palladium-hydride species. All that remains in the reaction flask is recovered starting 

material, inactive catalyst, and triphenylphosphine.  
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CO2H

Ac2O (2 equiv.)
PdCl2(PPh3)2 (0.01%)

PPh3 (0.5%)
230 ºC, 1 h

-CO  

Scheme 2  

 

 There are a few advantages of this reaction over the previous example. First,  it 

requires no solvent; the reaction is done neat with the starting material and acetic 

anhydride. Removing the solvent greatly simplifies the reaction and thus lowers the 

overall cost. Second, the catalyst loading is extremely low, at only 0.01%. This is 

significantly lower than the 3% used previously and, considering the expense of the 

palladium catalysts, decreases the cost. Acetic anhydride is the typical anhydride 

activator in this case, which is more common and cheaper than pivalic anhydride. 

Additionally, the excess acetic anhydride (as well as acetic acid byproduct) is distilled 

along with the product, and is thus recoverable. This is in contrast to Gooßen's procedure, 

where the issue of recovering the anhydride is not considered. Finally, the heating, while 

at a fairly high temperature, is only maintained for a an hour before the reaction is 

complete. This would be less of an input of energy than heating at lower temperatures for 

a much longer time period.  

 A variety of fatty acid substrates were transformed to the corresponding alpha 

olefins using the following conditions: 0.1% palladium chloride, 2.5% 

triphenylphosphine, 2 equivalents of acetic anhydride, and heating up to 230 ºC for a one  
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hour period, at which point the palladium becomes inactive and precipitates out of 

solution, turning it black.  

 The results of these reactions are summarized in Table 1. The conversions (based 

on recovered starting material) are generally in the 50-70% range and work well for 

simple acids a on multigram scale (Table 1, entries 1-4). For larger carbon chain fatty 

acids (i.e. containing twelve carbons or greater, entries 5-6), the olefin products had 

boiling points higher than the 230 ºC used. For these cases, mild vacuum distillation of 

the product was employed, as it is essential to remove the product from the reaction flask 

as soon as it is prepared in order to prevent olefin isomerization. 

 Additionally, the reaction is effective on both unsaturated and saturated olefins. 

For example, using oleic acid (Table 1, entry 6), a monounsaturated fatty acid, as the 

substrate cleanly gives a diene with comparable conversion as similar fully saturated 

acids. Likewise, the reaction works well on diunsaturated fatty acids (entry 7) to cleanly 

produce the corresponding triene compound. Previous efforts to produce trienes from 

linoleic acid were impractical, using stoichiometric amounts of lead tetraacetate.10 The 

conversion of oleic acid to the diene using this reaction is known in the literature.11 

However this is the first example of the catalytic conversion of linoleic acid to the triene 

using this chemistry. In both cases, vacuum distillation was employed, as the products are 

too involatile to distill under atmospheric pressure. 
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Entry Acid Substrate  Conv. 

1 octanoic acid (C8) 50% 

2 nonanoic acid (C9) 67% 

3 undecanoic acid (C11) 45% 

4 lauric acid (C12) 51% 

5 palmitic acid (C16) 56% 

6 oleic acid (C18:1) 60% 

7 linoleic acid (C18:2) 69% 

8 

myristic acid (C14) = 41.3%  

palmitic acid (C16) = 18.8% 

palmitoleic acid (C16:1) = 35.5% 

stearic acid (C18) = 4.4% 

52% 

9 

myristic acid (C14) = 34% 

palmitic acid (C16) = 25% 

palmitoleic acid (C16:1) = 36% 

stearic acid (C18) = 5% 

57% 

Table 1. Conversion of different fatty acid substrates 

 

 With the success of the reaction on simple fatty acids, other substrates were 

considered. Samples came from biobased sources through CBiRC collaborators 

containing a mixture of acids. These samples were prepared via engineered strains of 

bacteria that produce large amounts of fatty acids. After extraction of the desired starting  
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material and separation from cellular impurities, the catalytic conversion to olefin 

compounds was achieved in good yield (Table 1, entries 8-9) using vacuum distillation. 

Notably, the product composition directly matches that of the starting material by GCMS 

analysis. Thus, there is no preference in the selectivity of reaction.  

 One of the main goals of CBiRC is the preparation of bifunctional molecules from 

biobased sources. Because this reaction was found to be effective on monoacids, the next 

logical step was to attempt the reaction on diacid molecules. This would produce dialkene 

molecules with 2 less carbon units than the starting diacids, which could have potential 

use in polymer chemistry as linker molecules.  

 The reaction to convert diacids to dialkenes is shown in Scheme 3. Of note is that 

4 equivalents of acetic anhydride were used in this case. Using only the minimum 

required 2 equivalents of acetic anhydride only leads to insoluble polymer products in the 

reaction flask with no conversion to the product. An excess of activator alleviates this 

problem.12 The conversions are in the same 60% range as the monoacids, where x=6-10 

in Scheme 3. Likewise, the diolefin is distilled immediately as it is prepared, giving 

predominantly the desired terminal olefin product. 

 

  

( CO2HHO2C )x

4 equiv. Ac2O
PdCl2(PPh3)2 (0.01%)

PPh3 (0.5%)
230 ºC

60% conv. ( )x-4

9 10  
Scheme 3  
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 With these simple acids and diacids complete, the next idea was to extend this 

chemistry to different acid substrates. One example is 4-phenylbutanoic acid 11 (Scheme 

4), which underwent decarboxylative reaction to give allylbenzene with very nice 

conversion. Although it is not necessarily a bio-based starting material, it represents 

another succesful example of this chemistry, thus increasing the overall scope of the 

reaction. 

 

Ac2O
Pd + PPh3

heat
75% conv.Ph CO2H Ph

11 12
 

Scheme 4 

 

 One might notice that, up until this point, only primary acids were being 

employed as substrates. This begs the question: if the reaction works well on primary 

acids, will it be successful on secondary and tertiary acids? Cyclohexane carboxylic acid 

was the perfect substrate for this reaction (Scheme 5), as cyclohexene would be the only 

product due to symmetry. Gratifyingly, the reaction gave satisfactory conversion to 14, 

thus proving that both primary and secondary acids are both suitable substrates and 

increasing the scope of this reaction. 
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CO2H

Ac2O
Pd + PPh3

heat
64% conv.

13 14  

Scheme 5 

 
 An example of the reaction on tertiary acid is shown in Scheme 6. Alcohol 15 was 

converted to carboxylic acid 16 via a literature procedure.13 16 was transformed via the 

same decarboxylation procedure to give a mixture of alkenes 17 and 18. The low yields 

may be either due to the steric constraints of the bulky tertiary center, or the impurities 

with crude 16, which was used directly in the decarboxylation reaction without 

intermediate purification. In any case, regardless of yields, it is proof that this reaction is 

indeed possible on tertiary acids as well. 

 The selectivity of this reaction is worth mentioning. It is the first case of 

competing products being produced in the reaction, whereas all the previous reactions 

had a single possible product (aside from traces of isomerized alkene). Integration of 1H 

NMR peaks in the product mixture showed a 1:1.4 ratio of external 17 to internal alkene 

18. Thus, there is essentially no preference towards a primary or secondary hydrogen 

atom of the beta-hydride elimination step. Perhaps 18 may be the dominant species 

because it contains a trisubstituted double bond, while 17 contains a less stable 

disubstituted double bond.   
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OH

H2SO4
HCO2H
0 ºC, 1 h CO2H

Ac2O
PdCl2 + PPh3

heat
16% conv. (1:1.4) +

15 16 17 18  

Scheme 6 

 
 Other substrates screened in this reaction include levulinic acid, which can be 

prepared by heating sucrose with concentrated hydrochloric acid.14 The reaction on 

levulinic acid is shown in Scheme 7, where the product is methyl vinyl ketone 20. Due to 

the volatility of the product, the reaction setup was modified to trap the product in an ice 

bath. The reaction did give the required product, albeit in very small quantities. The 

conversion to product is very low, mostly due to thermal instability of the product. 

 

CO2H

Ac2O
Pd + PPh3

heat
(trace) O

O
19 20  

Scheme 7 

 

 The next substrate was cinnamic acid, a readily available compound that can 

come from biorenewable sources. The difference in this case is that the acid is on an sp2 

center, as opposed to previous examples which have an sp3 center adjacent to the acid 

(Scheme 8). The expected product of reaction would be styrene, which, of course, is a 

well-known monomer for polymerization reactions. 
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CO2H

Ac2O
PdCl2 (0.1%)
PPh3 (2.5%)

230 ºC

2221  

Scheme 8   

 

 Unfortunately, the reaction did not produce the desired product, only returning 

primarily unreacted starting material. The rationale for this is that the palladium catalyst 

undergoes oxidative addition to the anhydride as expected (intermediate 24 in Figure 3 

below). Upon loss of carbon monoxide, however, the resultant vinyl-palladium species 25 

cannot undergo elimination and becomes "trapped". This is evidenced by the rapid 

darkening of the reaction solution, which could come from the inactivation of palladium 

catalyst. The next idea was to add a reducing agent to the reaction to act as a hydride 

source and drive the catalytic cycle; typically this is done with formic acid.15 For our 

reaction, in order to alleviate difficulties with volatility of formic acid, ammonium 

formate was used. Unfortunately, the reaction still did not produce the required styrene 

product.    

 

O

O

O O

Pd
Pd(0) L

L

OAc -CO Pd
L

L
OAc

23 24 25  

Figure 3. Inactivation of palladium catalyst with cinnamic acid 
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 With the difficulties of the sp2 center in cinnamic acid in mind, the similar 

hydrocinnamic acid was considered (Scheme 9). The difference with this substrate is that 

the acid is attached to an sp3 center, which would allow clean beta-hydride elimination. 

Gratifyingly, the reaction cleanly produced styrene with 62% conversion. Therefore, it is 

clear that the acid must be attached to an sp3 center in order to effectively produce the 

alkene product. 

 

Ph CO2H

Ac2O
PdCl2 (0.1%)
PPh3 (2.5%)

230 ºC
62% conv. Ph

26 27  

Scheme 9 

 

 One of the key steps in this chemistry is the insertion of a palladium species into 

an anhydride. In theory, the palladium could insert into other types of anhydrides with 

subsequent loss of carbon monoxide, etc. In particular, there was interest in the addition 

of palladium into cyclic anhydrides. The advantage of these substrates over carboxylic 

acids is that no activator is necessary to form the mixed anhydride. The first example is 

succinic anhydride 28 (Scheme 10). The resulting product would be acrylic acid, a 

product of interest. Typical reaction conditions were used in this case (i.e. palladium 

dichloride, triphenylphosphine, and heating) minus the usual acetic anhydride activator. 

Similar to the reaction of the anhydride of cinnamic acid, the reaction solution underwent 

rapid darkening, indicating inactivation of catalyst. However, traces of the  
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acrylic acid was found in the distillate. The vast majority of the reaction mixture was 

unconverted starting material.  

 

O

O

O

PdCl2 (0.1%)
PPh3 (2.5%)

230 ºC
trace

CO2H

29

28  

Scheme 10 

 

 With the small promise of the first reaction, a second attempt was done with 

higher palladium loading (0.5% PdCl2 and 12.5% PPh3), the rationale being that it would 

give a higher conversion. Unfortunately, this proved to be unfruitful, as there were still 

only traces of the acrylic acid product. To try and solve this problem, we look towards the 

mechanism of reaction (shown in Figure 4). Palladium inserts into the anhydride as 

expected, forming acyl-palladium species 30. Loss of carbon monoxide would give 

alkylpalladium compound 31. However, due to the fixed ring structure of succinic 

anhydride, the palladium is unable to reach the required hydrogen atom in 31 for beta-

hydride elimination, and thus is unable to go towards the product. This could be 

evidenced by the rapid darkening of solution, presumably due to trapping of the catalyst 

as either 30 or 31. 
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O

O

O

Pd cat CO2H

29

28

Pd
O

O

O
L

L

-CO

Pd
O

O

L L

H
H

30 31  

Figure 4 

 

 With the hypothesis that the ring structure is inhibiting the elimination of the 

catalyst, it was postulated that the open-chain configuration of the compound would be 

more effective at producing the acrylate product. With this in mind, succinic anhydride 

underwent methanolysis in refluxing methanol to produce succinic anhydride 

monomethyl ester (32 in Scheme 11). This intermediate underwent the typical 

decarboxylation procedure to give methyl acrylate 33, with reasonable conversion over a 

2-step process. The effectiveness of the conversion of the open-chain molecule versus the 

closed-ring derivative verifies the hypothesis that the beta-hydride elimination step in the 

closed-ring structure is difficult and prevents the reaction from moving forward. This 

represents the first and only known method of converting succinates into acrylates via a 

2-step, one-pot procedure.   
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Ac2O
PdCl2 (0.1%)
PPh3 (2.5%)

230 ºC
68% conv. (2-steps) CO2MeO

O

O

MeOH
reflux

CO2HMeO2C

28

32 33

 

Scheme 11 

 

 Utilization of this chemistry on different cyclic anhydride substrates was also 

considered. 1,2-Cyclohexanedicarboxylic anhydride 34 was used, which, unlike succinic 

anhydride, has the potential to undergo beta-hydride elimination in two directions. It has 

been previously proven that elimination of hydride across the ring is impossible due to 

ring constraints. However, it was postulated that elimination of a hydrogen atom on 

another adjacent carbon atom is entirely possible. The reaction was the first attempted 

using vacuum distillation (Scheme 12), but none of the requisite alkene products were 

formed, even in the reaction flask. Again, a rapid darkening of the reaction solution is 

seen. This may be proof that, although it is possible for palladium to insert into anhydride 

bonds, in the case of cyclic anhydrides, the fixed geometry of the cyclic acylpalladium 

species prevents it from moving forward in the reaction process. 
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O

O

O

PdCl2 (0.1%)
PPh3 (2.5%)

230 ºC
26 torr CO2H

34
35

 

Scheme 12 

 

 With, all of these reactions completed, we looked at optimization of the reaction 

conditions. After all, in order to even be considered practical, the yields must be as high 

as possible in order to be effective. There are a few variables to change in order to 

achieve optimal conversion. These are as follows: temperature, type of palladium 

catalyst, type of anhydride activator, catalyst loading, and triphenylphosphine loading. 

Each will be looked at in turn. One note is that each example, and all subsequent 

examples, were done on a 10 gram scale on nonanoic acid. The percent conversion is 

based on recovered starting material. 

 First, let us look at the effect of the temperature on the overall conversion of the 

starting material to the product (Table 2). As reported by Miller, no reaction occurs until 

the internal temperature reaches 190 ºC. This was verified by heating the reaction in 20 

degree increments starting at 110 ºC and monitoring the reaction by taking aliquots from 

the reaction flask and checking by proton NMR. As expected, no olefin product was seen 

until the flask had reached an internal temperature of 190 ºC.  
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 With this in mind, the percent conversion of acid to product is monitored. As 

shown in Table 2, the difference in conversion between 200 ºC and 240 ºC shows a 

general trend showing that increased temperature leads to increased conversion. 

However, the conversion seems to have reached the limit of around 60-70%. Perhaps 

heating to temperatures higher than 250 ºC would lead to higher conversions, but due to 

limitations in the reaction set-up and for safety reasons, the temperature was not heated 

beyond 250 ºC.  

 
Table 2. Effect of temperature 

Entry Pd Cat Anhydride Temp. Pd loading PPh3 loading Conv. 

1 PdCl2 Ac2O 240 ºC 0.1 % 5 % 67 % 

2 PdCl2 Ac2O 220 ºC 0.1 % 5 % 63 % 

3 PdCl2 Ac2O 200 ºC 0.1 % 5 % 63 % 

  

 Different activating anhydrides were also considered for the reaction. With the 

idea of the mixed anhydride directing the palladium insertion, the anhydrides considered 

would have to be significantly bulky so that the insertion occurs in the desired position 

away from the bulky group. This would lead to less chance of undesired insertions in the 

opposite position and thus one would expect higher conversions when compared to the 

simple acetic anhydride. This leads to pivalic anhydride (containing a tert-butyl group) 

and butyric anhydride (containing an iso-propyl group). One point of note is that although 

both pivalic and iso-butyric anhydride are more expensive than acetic anhydride, the  
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excess anhydride and corresponding acid (i.e. pivalic acid and butyric acid, respectively) 

distill along with the product, and therefore they are recoverable. The results of 

experiments are summarized in Table 3. Interestingly, the new anhydrides give 

conversions comparable to that of acetic anhydride, albeit pivalic anhydride giving 

slightly increased conversions and iso-butyric anhydride slightly lower conversions.  

 
 

Table 3. Effect of anhydride activator 
  
Entry Pd Cat Anhydride Temp. Pd loading PPh3 loading Conv. 

1 Pd(OAc)2 Ac2O 240 ºC 0.1 % 5 % 61 % 

2 Pd(OAc)2 Piv2O 240 ºC 0.1 % 5 % 63 % 

3 Pd(OAc)2 iBu2O 240 ºC 0.1 % 5 % 58 % 

 

 The effect of the anhydride activator was further studied. Several fatty acids were 

converted using either 1 equivalent pivalic anhydride or acetic anhydride. The results 

shown in Figure 5. It is clear that, in all cases, pivalic anhydride (blue) gives higher 

conversions than acetic anhydride (red). In some cases, the conversion utilizing pivalic 

anhydride was higher by greater than 10 percent. 

 

 

 

 

 



www.manaraa.com

84  

	
  

Figure 5. Decarboxylation of various carboxylic acids using different anhydride 

activators (% conversion) A. undecanoic acid B. palmitic acid C. myristic acid D. lauric 

acid E. nonanoic acid 

 

 The next variable to be looked at was the effect of the type of catalyst used, 

shown in Table 4. In the original Miller paper, only palladium bistriphenylphosphine 

dichloride, and palladium dichloride were considered. Rhodium was also used, but the 

expense of rhodium precludes its use on an industrial scale, so it was not considered. In 

our case, five different catalysts were screened: four homogeneous catalysts (palladium 

dichloride, palladium bis-triphenylphosphine dichloride, palladium 

tetrakistriphenylphosphine, and palladium acetate and one heterogeneous catalyst (10% 

palladium on activated carbon). Of the homogeneous catalysts, is seems that in general 

Pd(II) (entries 2 and 3 in Table 4) tend to give higher conversions than Pd(0) (entries 1 

and 4 in Table 4), although each tend to give similar conversions in the 60% range. 

Palladium tetrakistriphenylphosphine gives the lowest relative conversion presumably 

due to the thermal instability of the catalyst. Using palladium on activated carbon (a  
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heterogeneous catalyst) gave no conversion. In any case, palladium dichloride gave the 

highest overall conversions and was considered the optimal catalyst for reaction. 

 

Table 4. Effect of catalyst type 

  
Entry Pd Cat Anhydride Temp.  Pd loading PPh3 loading Conv. 

1 Pd(PPh3)4 Ac2O 240 ºC 0.1 % 5 % 60 % 

2 PdCl2(PPh3)2 Ac2O 240 ºC 0.1 % 5 % 64 % 

3 PdCl2 Ac2O 240 ºC 0.1 % 5 % 67 % 

4 Pd(OAc)2 Ac2O 240 ºC 0.1 % 5 % 61 % 

5 Pd/C Ac2O 240 ºC 0.1 % 5 % 0 % 

 

 The final variables explored were the loading of catalyst and triphenylphosphine 

ligand. The literature reports a 0.01% catalyst and 0.5% triphenylphosphine loading, a 

fifty-fold excess of triphenylphosphine relative to palladium. The catalyst loading is 

already very low, at milligram quantities for tens of grams of substrate. Therefore the 

next logical question is if increasing the catalyst loading will increase the conversion 

signifcantly. In the case where palladium tetrakistriphenylphosphine is the palladium 

source, an increase of the catalyst loading from 0.01% to 0.1% increased the conversion 

by 16% (Table 5, entries 2 and 3). When palladium chloride is the catalyst (Table 5, 

entries 4 and 8), increasing the catalyst loading 10-fold has less of an effect (only a 5% 

increase in conversion), due to the effectiveness and stability of the catalyst used. In any  
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case, the overall trend is that higher catalyst loading leads to higher conversion, which is 

not a surprising result. 

 Because the catalyst loading is extremely low, and the anhydride activator has the 

potential to be recovered, triphenylphosphine loading is one of the limiting factors to the 

viability of the reaction, as it is used in large excess relative to the catalyst. The first 

experiment was to simply eliminate the triphenylphosphine altogether (entry 1). 

However, only a low conversion was achieved. Likewise, using a 1:1 catalyst to 

triphenylphosphine loading (entry 7) only produced trace amounts of the desired product. 

Changing the ligand to the previously used DPE-Phos did not have any increase in yields. 

Due to its expense it was not considered any further. Based on these experiments, it is 

clear that an excess of triphenylphosphine ligand is absolutely required for the reaction.  

 The next question to be answered was how low can the triphenylphosphine 

loading can go without the subsequent loss in conversion. Decreasing the ligand loading 

in half (i.e. from a 50-fold excess to a 25-fold excess) showed no significant decrease in 

overall conversion. For example using a 0.1% amount of catalyst, decreasing the ligand 

loading from 5% to 2.5% (Table 5, entries 4 and 5) gave only a 1% decrease in 

conversion. Likewise, using a 0.01% catalyst loading, decreasing the amount of ligand 

used from 0.5% to 0.25% (Table 5, entries 8 and 9) also only gave a 1% decrease in 

conversion of fatty acid to olefin.   

 Decreasing to a 10-fold excess of ligand gave different results. Only a slight 

decrease in conversion (4%) was seen using a 0.1% catalyst and 1% triphenylphosphine 

loading level (Table 5, entries 4 and 6).  However, at the 0.01% catalyst and 0.1% ligand  
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loading level, a large change in the overall conversion was seen (Table 5, entries 8 and 

10), decreasing from 62% to 28%. This may be a case of concentration, as the amount of 

nonanoic acid substrate and acetic anhydride were not changed in any of these 

experiments, even with lower catalyst/ligand loading.  

 

Table 5. Effects of catalyst and triphenylphosphine loading  

Entry Pd Cat Anhydride Temp.  Pd loading PPh3 loading Conv. 

1 Pd(PPh3)4 Ac2O 240 ºC 0.1 % 0 % 2 % 

2 Pd(PPh3)4 Ac2O 240 ºC 0.1 % 5 % 60 % 

3 Pd(PPh3)4 Ac2O 240 ºC 0.01 % 0.5 % 44 % 

              

4 PdCl2 Ac2O 240 ºC 0.1 % 5 % 67 % 

5 PdCl2 Ac2O 240 ºC 0.1 % 2.5 % 66 % 

6 PdCl2 Ac2O 240 ºC 0.1 % 1 % 63 % 

7 PdCl2 Ac2O 240 ºC 0.1 % 0.1 % trace 

              

8 PdCl2 Ac2O 240 ºC 0.01 % 0.5 % 62 % 

9 PdCl2 Ac2O 240 ºC 0.01 % 0.25 % 61 % 

10 PdCl2 Ac2O 240 ºC 0.01 % 0.1 % 28 % 
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 There are a few main conclusions gleaned from Table 5. First is that an excess of 

triphenylphosphine ligand is required, although not necessarily at a 50-fold equivalents; 

25-fold and, in certain cases, 10-fold excess of ligand is also tolerated. Secondly, 

changing the catalyst loading from 0.1% to 0.01% does not have a large effect on the 

conversion of reaction. 

 In all of the examples above, even with optimized reaction conditions, the 

conversion never seemed to go above 70%. This is a large problem if this process is to be 

used industrially, as high yields will be required. One possible solution to this problem is 

the addition of additional catalyst to the reaction mixture once it becomes inactivated. 

Thus, an experiment was undertaken in that, after a first round of reaction, additional 

catalyst, ligand, and acetic anhydride was added to the reaction mixture. Additional 

heating and further distillation of the product produced the alpha olefin product with an 

overall conversion of approximately 90% for the 2-step process. The addition of a third 

round of catalyst would presumably push the reaction further and increase the overall 

conversion.  

  In conclusion, the large scale preparation of alpha olefins from fatty acids was 

achieved. A wide variety of carboxylic acids were used as substrates, including those 

derived from biological sources. A similar method was used to prepare methyl acrylate 

from succinic anhydride in a 2-step, one-pot procedure. Future work includes utilizing 

heterogeneous palladium catalysts instead of the homogeneous catalysts currently used. 

This would allow for recycling of the palladium catalyst and would increase the 

economic viability of this chemistry.  
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Experimental  

 Unless otherwise noted, materials were obtained from commercial suppliers and 

used without purification.  All experiments were performed under ambient atmospheric 

pressure unless otherwise noted. Nuclear magnetic resonance experiments were 

performed with a Varian 300 MHz instrument. All chemical shifts are reported relative to 

CDCl3 (7.27 ppm for 1H), unless otherwise noted. Coupling constants (J) are reported in 

Hz with abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Gas 

chromatography experiments were performed on a Micromass GC-TOF MS.  

 

Typical reaction procedure on nonanoic acid: 

 Nonanoic acid (10 g), triphenylphosphine (0.5%), palladium dichloride (0.01%), 

and acetic anhydride (2 equivalents) are all mixed together in a 50 mL round bottom flask 

attached to a short path distillation apparatus with an attached collecting flask.  The 

reaction flask is heated in an oil bath (Dow Corning fluid) up to 230 ºC with stirring. 

Initially, excess acetic anhydride and acetic acid distills off. Around 190 ºC, 1-octene 

begins to distill off the reaction flask and heating is continued to around 230 ºC. After 

approximately 45 minutes to 1 hour, the reaction solution darkens to black and inactive 

palladium catalyst precipitates out, indicating completion of the reaction. The remainder 

in the flask is inactive palladium, triphenylphosphine, unreacted nonanoic acid, and small 

amounts of mixed anhydride. The percent conversion is determined by the mass of 

remaining starting material remaining in the reaction flask (typical conversion is ca. 

60%). The ratio of alpha-olefin to isomerized olefin is determined by integration of the  
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olefinic hydrogens by proton 1H NMR of the product, which found to be around 95:5 of 

the desired alpha olefin over the isomerized olefin. 1H NMR (300 MHz, CDCl3): ∂ 5.87-

5.73 (m, 1H), 5.41-5.43 (m, 2H, isomerized product), 4.96 (dd, J = 12 Hz, J = 6 Hz, 2H), 

2.17-1.99 (m, 4H), 1.38-1.24 (m, 6H), 0.86 (t, J = 6 Hz, 3H). 

 

Preparation of triene from linoleic acid 

 To a single-necked, 25 mL round-bottom flask equipped with a teflon stirbar is 

added linoleic acid (2.081 g, 7.4 mmol), palladium dichloride (6 mg, 0.03 mmol), 

triphenylphosphine (64 mg, 0.2 mmol), and acetic anhydride (3 mL, 32 mmol). The flask 

is equipped with a short-path distillation apparatus with a thermometer and a 25 mL 

collecting flask in an ice bath. The reaction mixture is gradually heated to a temperature 

of 240 ºC in an oil bath over a 15 minute period, where the desired triene compound is 

disstilled under vacuum (26 torr), along with excess acetic anhydride and acetic acid 

byproduct. The reaction is complete after approximately 45 minutes heating at 240 ºC 

when no more product distills off and the solution darkens to a black color due to 

inactivation of the catalyst. The reaction flask is cooled to room temperature and weighed 

to determine how much starting material was removed due to reaction (1.429 g, 69% 

conversion).  

 

 

(8Z,11Z)-Heptadeca-1,8,11-triene: 1H NMR (300 MHz, CDCl3): ∂ 5.71-5.57 (m, 1H), 

5.26-5.12 (m, 4H), 4.79 (dd, J = 18 Hz, J = 9 Hz, 2H), 2.62 (t, J = 6 Hz, 2H), 2.05-1.97  
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(m, 6H), 1.22-1.15 (m, 12H), 0.74 (t, J = 6 Hz, 3H). 13C NMR (75 MHz, CDCl3): ∂ 

139.0, 130.1, 129.9, 128.1, 128.0, 114.2, 33.8, 31.6, 29.5, 29.4, 29.2, 28.9, 28.8, 27.2, 

25.6, 22.6, 14.0.  HRMS (EI) m/z exact mass calculated for C17H30 234.2342, found 

234.2340. 

 

Preparation of cyclohexene from cyclohexane carboxylic acid: 

 To a single-necked, 50 mL round-bottom flask equipped with a teflon stirbar is 

added 10 g nonanoic acid, 14 mg palladium dichloride, and 512 mg triphenylphosphine, 

and 15 mL of acetic anhydride, respectively. The flask is equipped with a short-path 

distillation apparatus with a thermometer, argon balloon, and an attached 50 mL 

collecting flask in an ice bath. The reaction flask is heated to a temperature of 230 ºC in 

an oil bath over a 30-40 minute time period, distilling out the excess acetic anhydride, 

acetic acid byproduct, and cyclohexene product. The reaction is complete after 

approximately 30 min heating at 230 ºC when no more product distills off and the 

solution darkens to a black color due to inactivation of the catalyst. The distillate is then 

analyzed by NMR to verify the presence of product by comparison to commercially 

available materials. The reaction flask is cooled and weighed to determine how much 

starting material was removed due to reaction (6.4 g, 64% conversion). 

  

Preparation of methyl acrylate from succinic anhydride: 

 To a single-necked, 100 mL round-bottom flask equipped with a teflon stirbar, is 

added 20 g of succinic anhydride dissolved in 50 mL methanol. The flask is equipped  
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with a reflux condenser topped with a septa and argon balloon, and the reaction mixture 

is heated to reflux (70 ºC) in an oil bath (Dow Corning Fluid) for a 16 hour time period. 

The reaction flask is then allowed to cool to room temperature, the stir bar removed, and 

the excess methanol removed via rotary evaporator to give 26.4 g of succinic acid 

monomethyl ester. 

 In the same 100 mL flask containing succinic acid monomethyl ester is added a 

teflon stirbar, 35 mg palladium dichloride, 1.31 g triphenylphosphine, and 38 mL acetic 

anhydride, respectively. The flask is equipped with a short-path distillation apparatus 

with a thermometer, argon balloon, and an attached 100 mL collecting flask in an ice 

bath. The reaction flask is heated to a temperature of 230 ºC in an oil bath over a 30-40 

minute time period, distilling out the excess acetic anhydride, acetic acid byproduct, and 

methyl acrylate. The reaction is complete after approximately 30 min of heating at 230 ºC 

when no more product distills off and the solution darkens to a black color due to 

inactivation of the catalyst. The distillate is then analyzed by NMR to verify the presence 

of methyl acrylate, comparing to spectra of commercially available material. The reaction 

flask is cooled and weighed to determine how much starting material was removed due to 

reaction (17.9 g, 68% conversion).      

  

Preparation of styrene from hydrocinnamic acid: 

 To a single-necked, 100 mL round-bottom flask equipped with a teflon stirbar is 

added 20.1 g hydrocinnamic acid, 25 mg palladium dichloride, and 899 mg 

triphenylphosphine, and 25 mL of acetic anhydride, respectively. The flask is equipped  
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with a short-path distillation apparatus with a thermometer, argon balloon, and an 

attached 100 mL collecting flask in an ice bath. The reaction flask is heated to a 

temperature of 230 ºC in an oil bath over a 30-40 minute time period, distilling out the 

excess acetic anhydride, acetic acid byproduct, and styrene product. The reaction is 

complete after approximately 30 min of heating at 230 ºC when no more product distills 

off and the solution darkens to a black color due to inactivation of the catalyst. The 

distillate is then analyzed by NMR to verify the presence of styrene, a commercially-

available compound. The reaction flask is cooled and weighed to determine how much 

starting material was removed due to reaction (12.3 g, 61% conversion). 

  

Preparation of a mixture of alpha olefins under reduced pressure:  

 To a single-necked, 100 mL round-bottom flask equipped with a teflon stirbar is 

added myristic acid (20.72 g), palmitic acid (27.23 g), and of stearic acid (2.21 g). 

Palladium dichloride (45 mg), and triphenylphosphine (1.338 g), and acetic anhydride (50 

mL) are also added, respectively. The flask is equipped with a short-path distillation 

apparatus with a thermometer, argon balloon, an attached 100 mL collecting flask in an 

ice bath, and placed under vacuum by means of a small vacuum pump (26 torr). The 

reaction flask is heated to a temperature of 230 ºC in an oil bath over a 30-40 minute time 

period, distilling out the excess acetic anhydride, acetic acid byproduct, and olefin 

products. The reaction is complete after approximately 30 min of heating at 230 ºC when 

no more product distills off and the solution darkens to a black color due to inactivation 

of the catalyst. The distillate is then analyzed by NMR to verify the presence of styrene.  
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The reaction flask is cooled and weighed to determine how much starting material was 

removed due to reaction (36.26 g, 72% conversion). 

  A second experiment was run in a 25 mL round-bottom flask using a mixture of 

myristic acid (0.42 g), palmitic acid (0.56 g), and stearic acid (0.05 g). Palladium 

dichloride (2 mg), triphenylphosphine (32 mg), and acetic anhydride (5 mL) are 

employed in this case. The flask is equipped with a short-path distillation apparatus with 

a thermometer, argon balloon, an attached 25 mL collecting flask in an ice bath, and 

placed under vacuum by means of a small vacuum pump (26 torr). The reaction flask is 

heated to a temperature of 230 ºC in an oil bath over a 30-40 minute time period, 

distilling out the excess acetic anhydride, acetic acid byproduct, and olefin products. The 

reaction is complete after approximately 30 min of heating at 230 ºC when no more 

product distills off and the solution darkens to a black color due to inactivation of the 

catalyst. The distillate is then analyzed by NMR to verify the presence of styrene. The 

reaction flask is cooled and weighed to determine how much starting material was 

removed due to reaction (0.77 g, 75% conversion). 

  

Preparation of alpha olefins from a mixture of fatty acids from a biological sample: 

 To a single-necked, 25 mL round-bottom flask equipped with a teflon stirbar is 

added 0.51 g of a mixture of fatty acids with the following composition: 41.3% of C14, 

35.5% of C16:1, 18.8% of C16, and 4.4% of C18. This sample came from the petroleum 

ether extraction of a biological sample. 5 mg palladium dichloride, 50 mg 

triphenylphosphine, and 5 mL of acetic anhydride are added to the reaction flask as well.  
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The flask is equipped with a short-path distillation apparatus with a thermometer, an 

attached 25 mL collecting flask in an ice bath, and placed under vacuum by means of a 

small vacuum pump (26 torr). The reaction flask is heated to a temperature of 230 ºC in 

an oil bath over a 30-40 minute time period, distilling out the excess acetic anhydride, 

acetic acid byproduct, and olefin products. The reaction is complete after approximately 

30 min of heating at 230 ºC when no more products distill off and the solution darkens to 

a black color due to inactivation of the catalyst. The distillate is then analyzed by NMR to 

verify the presence of alpha olefins. The reaction flask is cooled and weighed to 

determine how much starting material was removed due to reaction (0.26 g, 51% 

conversion). The mixture of products was analyzed by GC-MS. GC-MS data: 7.06 min 

(m/z = 182.2, C13 alkene, 0.42), 8.74 min (m/z = 208.3, C15 monounsaturated alkene, 

0.36), 8.90 min (m/z = 210.3, C15 alkene, 0.18), 10.37 min (m/z = 236.3, C17 alkene, 

0.04). 

 The reaction was repeated under similar reaction conditions (i.e. 26 torr pressure, 

230 ºC heating) using a sample (3.7 g) of a mixture of fatty acids with the following 

composition: 34% of C14, 36% of C16:1, 25% of C16, and 5% of C18. 6 mg of 

palladium chloride, 60 mg triphenylphosphine, and 25 mL acetic anhydride were 

employed in this case. The conversion of this reaction is 2.1 g (57%). GC-MS data: 7.33 

min (m/z = 182.2, C13 alkene, 0.34), 9.01 (m/z = 208.3, C15 monounsaturated alkene, 

0.36), 9.16 min (m/z = 210.3, C15 alkene, 25%), 10.37 min (m/z = 236.3, C17 alkene, 

5%). 
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CHAPTER 4. NEW PRODUCTS FROM PYRONES 

 

Introduction 

 The Diels-Alder reaction is one of the most useful tools available to organic 

chemists. It is a cycloaddition reaction that forms two new carbon-carbon bonds in a 

single step, involving the reaction of a dialkene compound (the 'diene') with an olefin (the 

'dieneophile'). Typically the diene component is electron-rich, while the dieneophile is 

electron deficient, although this is not always the case. Some reactions involve the 

opposite electron demand, i.e. using an electron poor diene and an electron rich 

dieneophile, although they are less common.1  

 Diels-Alder reactions on 2-pyrone derivatives are fairly well known.2 Because of 

a significant aromatic character (resonance forms shown in Figure 1), they are less 

reactive than traditional diene compounds in cycloaddition reactions.  

 

O

O

O

O

1 2  

Figure 1. Resonance forms of 2-pyrone 

 

 A typical example of this type of reaction with a pyrone is shown in Scheme 1, 

using an alkyne as the dienophile. The two reactants undergo a [4+2] cycloaddition to 

form a unstable bicyclic intermediate 4, which rapidly eliminates the elements of COX to  
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form an aromatic compound. For pyrones (where X=O), this involves irreversible loss of 

carbon dioxide. In the case where the dienophile is an alkene (Scheme 2), bicyclic 

compound 6 is stable and can be isolated.   

 

X

O

Diels-Alder
[4 + 2] cycloaddition

X

O

R
R

-COX
R

R'

R'
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3 4 5  

Scheme 1. Diels-Alder reaction with alkynes 

 

 

X

O

Diels-Alder
[4 + 2] cycloaddition

XR
O

R
R
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Scheme 2. Diels-Alder reaction with alkenes 

 

 With this in mind, we wanted to utilize a pyrone that could be prepared via 

biorenewable pathways. Coumalic acid can be prepared from treatment of malic acid 

with fuming sulfuric acid, following a known procedure3 (Scheme 3). Malic acid is an 

important intermediate in the citric acid cycle and a common component in fruit. 

Biologists could potentially engineer microbes that would utilize a metabolic pathway 

that siphons off malic acid, thus allowing production in large quantities from renewable  
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biomass.  With this in mind, this makes coumalic acid a good candidate as substrate for 

the biorenewable chemicals platform. 

 

HO2C

OH
CO2H

fuming H2SO4 O

O

CO2H
7

8  

Scheme 3. Preparation of coumalic acid from malic acid 

 

 Earlier work done by Matsushita and coworkers explored the decarboxylative 

Diels-Alder reactions of methyl coumalate with aromatic olefins to produce 4-aryl methyl 

benzoates4 (Scheme 4). The reaction was done with a 10% palladium on activated carbon 

catalyst under thermal conditions (refluxing m-xylene, dodecane, or mesitylene) to 

produce 4'-methylbiphenyl-4-carboxylate 10 in good yield.  

 

O

O

CO2Me

styrene
10% Pd-C (2.5 w/w equiv.)
m-xylene, reflux, 10 h

Ph

CO2Me

9 10  

Scheme 4 

 

 The mechanism of reaction is shown in Figure 2. First, methyl coumalate and the 

olefin undergo a thermal Diels-Alder reaction to form bicylic intermediate 11. The  
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palladium catalyst then serves to dehydrogenate 11 to form compound 12, which is 

unstable and in turn undergoes an electrocyclic aromatization and exclusion of carbon 

dioxide to give product 10. Interestingly, the regiochemistry of the reaction was reported 

to produce the para substituted product exclusively.  

 

O

O

Diels-Alder
[4 + 2] cycloaddition

O
Ph

O

Ph

CO2Me MeO2C

Pd/C
-H2

O

O

Ph

Ph

CO2Me MeO2C

-CO2

9

11

1210  

Figure 2. Mechanism for decarboxylation   

 

 Like the work with alpha-olefins, this project is in collaboration with the Center 

for Biorenewable Chemicals (CBiRC). One of the main goals of the center is producing 

commodity chemicals currently produced through petrochemical methods through new 

biobased methods. One of the the potential chemical targets is 1,4-benzenedicarboxylic 

acid or terephthalic acid. The typical prodution of this compound occurs via oxidation of  

p-xylene over manganese or cobalt acetate in acetic acid.5 p-Xylene comes from naphtha, 

a petroleum source.  
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 With this in mind, we evaluted a new method of producing terephthalic acid from 

biorenewable sources. Methyl coumalate can undergo a decarboxylative Diels-Alder 

reaction with simple alkyl olefins to produce para-substituted methyl benzoates. The 

resultant aromatic alkane can be oxidized to the benzoic acid, and the methyl ester 

hydrolyzed to produce terephthalic acid. Methyl coumalate is the methyl ester of  

coumalic acid.6 The regiochemistry of the reactions is critical in order to produce the 

required para substitution on the terephthalic acid. The reaction also suggests the use of 

simple, inactivated olefins, in connection with previous work with alpha olefins.   

  

Results and Discussion 

 The first experiments were done on methyl coumalate with various olefin 

substrates. The general form of the reaction is shown in Scheme 5. This was done in a 

similar fashion as the literature precedent: methyl coumalate, 2.5 weight equivalents 

(relative to methyl coumalate) of a 10% palladium on carbon catalyst, and 10 molar 

equivalents of 1-alkene in mesitylene heated to 200 ºC. The first example used 1-decene 

as the olefin substrate. Gratifyingly, this produced the alkyl-substituted benzoic acid 

methyl ester with the alkyl group in the para position as expected, with only traces of the 

meta isomer.  
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O

O

CO2Me

10% Pd-C 
mesitylene, 200 ºC

sealed tube, 12-16 h

R

CO2Me

R

9 14a-f

(13)

 

Scheme 5 

 

 One of the disadvantages of previous work was the very high palladium loading 

used. While the catalyst only contains 10% of the required palladium, 2.5 weight 

equivalents is still too high to be practical. Ideally, the catalyst loading would be as low 

as possible. Several experiments were done to decrease the catalyst loading, and it was 

found that using 0.25 weight equivalents of 10% palladium on carbon had no effect on 

both the yields or the regioselectivity of the reaction. Decreasing the loading any lower 

lead to greatly lowered conversions to the product. In any case, the catalyst loading was 

decreased from the sub-stoichiometric levels used previously to the catalytic range. This 

is of utmost importance commercially, as decreasing the catalyst loading will decrease 

the overall cost of the reaction. 

 The reason for the regioselectivity is still undetermined. One possible explanation 

is shown in Figure 3. The reaction has the possiblity of forming two intermediates, 11 

and 15, which correspond to the para and meta substituted products, respectively. 

Because compound 11 corresponds to the major aromatic product 10, it is expected that 

intermediate 11 is also favored over 15. With 15, the R group is in the psuedo meta 

position and has steric hindrance between the methyl ester and the R group. However, 11  
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has the R group in the psuedo para position, which places the two groups with minimal 

steric constraints; thus it is expected to be more stable and the favored intermediate to 

lead to the major project. 
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Figure 3 

 

 The reaction was repeated on a number of examples of alpha-olefin substrates, 

each of which is shown in Table 1. The reaction is tolerant of simple alkyl olefins (entries 

1-4) and allyl ethers (entries 5-6). Other substrates were attempted, but with less success. 

For example, benzyl ethers were attempted, but the product was a complex mixture. 

Presumably the catalyst is well known to facilitate the deprotection of benzylic ethers to 

alcohols. Likewise, the reaction generally does not tolerate amines, as amines can act as  
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catalyst poisons. Allyl acetate was attempted, but it did not give satisfactory yields, 

perhaps due to the volatility of the substrate. 

 

Table 1. Reaction of methyl coumalate with terminal olefins 

Entry Alkene Yield R Group Product 

1 1-nonene 52% -(CH2)6CH3 14a 

2 1-decene 70% -(CH2)7CH3 14b 

3 1-undecene 63% -(CH2)8CH3 14c 

4 allyl benzene 83% -CH2Ph 14d 

5 allyl phenyl ether 61% -CH2OPh 14e 

6 allyl heptyl ether 51% -CH2O(CH2)6CH3 14f 

 

 In an extension of this chemistry, the reaction was also tried on internal olefins 

(Scheme 6). In these cases, only symmetrical alkenes were chosen. This was due in order 

to give a single product, thus avoiding issues of regiochemistry, as well as simplifying the 

subsequent characterization of the products. Unlike examples with terminal olefins, 

where theoretically two products are possible, only a single product is possible when 

using a symmetrical internal olefin.  
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Scheme 6 

 

 The results are shown in Table 2. Of note is that the trans alkene (entry 1) gave 

significant lower yields than cis alkenes, which is typical of Diels-Alder reactions. This is 

due to the steric hindrance of trans alkenes as they approach the dieneophiles, as they are 

more sterically encumbered and thus less reactive. The reaction was also shown to be 

effective on cyclic alkenes (entries 2-4) to give the fused ring product.  

 

Table 2. Reaction of methyl coumalate with internal olefins 

Entry Alkene Yield R Group Product 

1 trans-4-octene 45% -(CH2)2CH3 17a 

2 cis-cyclodecene 70% -(CH2)8- 17b 

3 cis-cyclooctene 62% -(CH2)6- 17c 

4 cis-cyclododecene 70% -(CH2)10- 17d 

 

 With the successful reaction of a wide variety of olefins with methyl coumalate, 

the same conditions were attempted using coumalic acid (Scheme 7). The key difference 

in this case is that the solubility of coumalic acid in organic solvents is much lower than 

methyl coumalate and could potentially lead to difficulties. However, as the reaction  
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procedes towards product and the solution is heated, the compound gradually becomes 

soluble. 

 

O

O

CO2H
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R

CO2H

R

8 18a-h  

Scheme 7 

 

 The results of these experiments are shown in Table 3. Not surprisingly, the 

regioselectivity produces strictly the para substituted product in a similar fashion as with 

methyl coumalate. Similar olefinic substrates were screened and again both simple 

olefins (entries 1-4) and allyl ethers (entries 5-6) are tolerated. Additionally, dienophiles 

with simple alkyl esters are tolerated (entry 7). Another new alkene substrate used in this 

reaction was safrole (entry 8) to produce compound 18h as the para-substituted product. 

Therefore, this reaction is not only tolerant of simple alkenes, but more complex olefin 

substrates as well. 
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Table 3. Reaction of coumalic acid with various olefins 

Entry Alkene Yield R Group Product 

1 1-heptene 85% -(CH2)4CH3 18a 

2 1-decene 72% -(CH2)7CH3 18b 

3 1-undecene 69% -(CH2)8CH3 18c 

4 allyl benzene 79% -CH2Ph 18d 

5 allyl phenyl ether 65% -CH2OPh 18e 

6 allyl heptyl ether 66% -CH2O(CH2)6CH3 18f 

7 methyl dec-9-enoate 78% -(CH2)7CO2Me 18g 

8 safrole  69% 

O

O

 

18h 

 

 There are several improvements from the previous work that makes this chemistry 

intriguing. If this process is to be utilized to produce terephthalic acid, reaction directly 

with coumalic acid as opposed to methyl coumalate is an advantage commercially. 

Methyl coumalate is prepared from esterification of coumalic acid, and the corresponding 

ester must be cleaved to the acid at a later stage to produce the acid. This adds two steps 

(esterification and hydrolysis) to the overall synthesis. Reaction directly on coumalic acid 

eliminates the need for these steps and thus simplifies the process. The main advantage of 

methyl coumalate over coumalic acid is the solubility, but, as previously mentioned, 

coumalic acid will dissolve upon heating.  
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 This leads to the second improvement of this reaction: the elimination of the 

solvent. Previous examples used high-boiling nonpolar hydrocarbons as the solvent (e.g. 

mesitylene, xylenes); but it was found that it is not necessary. Coumalic acid or methyl 

coumalate can be heated neat in an excess of olefin (typically a liquid at room 

temperature) using the same conditions as before to give comparable yields of the desired 

benzoic acid or benzoic acid ester. The excess olefin solvent could then be removed via 

distillation and easily recovered.    

 The final advantage of this reaction is that it uses inactive olefins as the 

dieneophiles. Examples of Diels-Alder reactions using inactivated alkenes as dienophiles 

are rare, which makes this example all the more interesting. The older reactions use 

styrene as the alkene substrate, which produces a biphenyl product. Because the end 

product is a stable conjugated aromatic system, styrene could be seen as a type of 

activated olefin towards Diels-Alder reactions. The driving force for this reaction in that 

case is the formation of the stable biphenyl product. However, most of our improved 

examples use simple alkyl groups to produce simple alkyl-substituted benzoic acids (or 

esters) with no clear driving force for completion. The same is true of allylic ethers, 

which do not have any clear electronic rationale for the formation of the product. 

 One of the limitations of this chemistry is that is can only be applied to higher-

boiling olefins (i.e. with boiling points greater than 100 ºC) in order to achieve 

satisfactory yields. Lower-boiling olefins tend to give poor conversions to the product, 

giving mostly recovered starting material. 
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 Another limitation to this chemistry is that, while the reaction produces the 

required para substituted compound, in order to produce the desired terephthalic acid, the 

long alkyl side chain must be oxidized to the acid. This process is known, however, in the 

case of alkyl-substituted benzoates, it involves the loss a large carbon fragment. From an 

atom economy standpoint, this is not a desirable situation, as a large portion of the 

molecule is lost in the process. The ideal olefin substrate for this reaction is the simple 

three-carbon unit, propene, which would produce methyl 4-methylbenzoate, which is 

well known to be oxidized to terephthlatic acid.7 This is done without the subsequent loss 

of the large carbon fragment. 

 Unfortunately, propene is a gas at room temperature and is therefore unsuitable 

for reaction using sealed tube conditions. A reaction vessel that is able to withstand the 

higher pressures is required. The general form of the reaction is shown in Scheme 8. The 

reaction was done in an autoclave apparatus, charging multiple times with propene gas 

until the reaction chamber was saturated. Another modification to the reaction of methyl 

coumalate with propene was the use of toluene as the solvent. This is an advantage, as 

toluene is a much more standard solvent when compared to mesitylene. Although it is 

lower boiling than mesitylene, toluene is perfectly suitable at the elevated temperatures 

and pressures used. 
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Scheme 8 

 

 To our delight, the desired compound 19 was produced in good yield. Again, the 

para-substituted product is the major product. This is intriguing because even the simple 

methyl group, one of the least sterically-demanding functional groups, is able to direct 

the regiochemistry towards the desired compound. 

 In parallel to previous work, the next step was to attempt the reaction of propene 

directly on comalic acid (Scheme 9). As in the reaction using methyl coumalate, the para 

product 20 is the major compound produced. Catalytic oxidation of 20 to terephthalic 

acid is well-known,8 thus representing a formal synthesis of terephthalic acid from 

coumalic acid.  
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Scheme 9 

 

 Interestingly, the major byproduct in this reaction is the isopropyl ester of desired 

product (21 in Scheme 9). This product represents less than 5% of the overall product via 

GCMS and proton NMR integration experiments. It is presumed to arise from the 

addition of another molecule of propene to the acid moiety of the product, which is not 

entirely unreasonable under the harsh conditions.  

 In all the cases shown, the reactions were done on inactivated olefins. However, 

Diels-Alder reactions are typically done using activated alkenes, usually containing an 

electron-withdrawing group. With this in mind, the use of an activated dienophile is the 

next natural step and would expand the scope of the chemistry. 

 The first reaction using an activated dieneophile was done with methyl coumalate 

as the pyrone/diene component and methyl acrylate as the dienophile (Scheme 10). 

Interestingly, the reaction produced a roughly 1:1 mixture of the para and meta dimethyl 

terephthalates (22 and 23, respectively) in high yield (> 90%). The only side products of 

the reaction were found to be traces of the dimer compounds of methyl acrylate, 24 and  
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25. The reaction tends to slightly favor the para terephthalate 22 over the meta 23 by 

GCMS and proton NMR integration, however it is not high enough to be considered 

selective towards the para isomer in any way.   
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Scheme 10      

 

 Because the para-substituted terephthalic acid was the target compound as 

opposed to the meta, the next step was to modify the reaction conditions to favor the 

desired para isomer. Because it was postulated that the steric bulk of the dienophile 

directs the towards the more stable para product, more bulky acrylates were considered. 

The rationale is that, like with simple alkyl olefins, larger arcylates would also direct 

towards the desired product. 

 The first acrylate considered was simple ethyl acrylate (Scheme 11). The hope 

was that the slightly larger ethyl group would be more directing than the methyl group. 

Unfortunately, the reaction was identical to previous experiments, giving high yields of a  
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roughly 1:1 mixture of isomers. This is not entirely surprising, as methyl and ethyl groups 

have similar A-values and have roughly the same steric demands. 

 

O

O

CO2Me CO2Me

CO2Et
CO2Et

Pd/C
toluene

200 ºC, autoclave
5 h

93% (1:1 para/meta)

+

CO2Me

CO2Et

9 26 27
 

Scheme 11 

 

 The tert-butyl group is considerably larger than the simple methyl group, and 

would be thus be the most directing group from a steric standpoint. Thus, the reaction 

was attempted of methyl coumalate with tert-butyl acrylate (Scheme 12). Unfortunately, 

this proved to be sluggish, only giving recovered ethyl acrylate and none of the desired 

terephthalate product 28. The reasoning is that, although the larger acrylate could 

potentially act as a directing group for the regiochemistry for the Diels-Alder reaction, it 

is also too bulky to appreciably react with the pyrone. 
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Scheme 12  
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 The steric argument for the regiochemistry of the Diels-Alder reaction with 

methyl acrylate proved to be unfruitful, perhaps there is an electronic explanation to the 

regiochemistry. After all, the acrylate is a much different compound electronically than 

simple olefins and would thus have different chemical properties.   

 To help explain the chemistry of the reaction with methyl acrylate, various 

resonance forms of methyl acrylate are shown (Figure 4). Of note is that carbon 6 has a 

positive charge in species 29 and 30, therefore making it net electron deficient. In 

contrast, carbon 3 in 31 has a negative charge, thus becoming net electron donating. 

Because these two carbons are involved in the carbon-carbon bond forming step of the 

Diels-Alder reaction, they are the most involved in directing the regiochemistry. 
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Figure 4. Resonance forms of methyl coumalate  
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 Reaction with a dienophile containing an electron-donating group would form a 

bond between the partial positive charge on the pyrone in the 6 position with the partial 

negative charge on the dienophile (Figure 5). Thus, the ester on methyl acrylate and the 

electron donating group on the dienophile would end up in a 1,4 relationship in the 

bicyclic intermediate, which corresponds to the para postion in the resulting benzene 

ring. The other isomer involves forming a bond between the partial negatively charged 

atom in position 3 on the pyrone with the partially negatively charged carbon on the 

dienophile, which is unfavorable. For simple olefins as dienophiles, an alkyl group is a 

weakly electron-donating group, thus explaining the resultant regiochemistry in those 

products.   
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Figure 5 

  

 However, if the variable group on the dienophile is an ester (or other electron 

withdrawing group), the olefin becomes more positive charged in character (Figure 6). If 

this is the case, the reaction is expected to favor the more electronically matched 

intermediate 37, forming a bond between the electron-defecient alkene and the partially 

negative-charged carbon at C3. Compound 37 corresponds to the meta substituted  
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benzene product while 36 corresponds to para. This could help to explain why the meta 

product is seen in the reaction with acrylates, although it does not completely explain 

why the product composition in reactions with acrylates are a 1:1 mixture.  
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Figure 6 

 

 One of the typical modifications of the Diels-Alder reaction conditions is the use 

of Lewis acid catalysts.9 Not only would this accelerate the rate of reaction, but it could 

also help with the issue of selectivity. One of the first Lewis acids used was a catalytic 

amount of lithium chloride (Scheme 13). However, there was no improvement in either 

the yields or selectivity. 
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Scheme 13  
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 The next plan was to use a stronger Lewis acid, aluminum trichloride (Scheme 

14). Although it is a harsher reagent than the very mild lithium chloride, this example 

will provide some valuable insights into the effect of Lewis acids on the cycloaddition 

reaction of methyl coumalate.   
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Scheme 14 

 

 The result of this reaction was unexpected; the selectivity actually favored the 

meta isomer over the para in a 4:1 ratio, based on peak integration of the proton NMR. 

The yield for reaction, unfortunately, was unsatisfactorily low, at only 15%, which could 

be due to the decomposition of the compounds over the acid catalyst, as no recovered 

starting material was seen. 

 The next extension of this chemistry was to utilize the reaction to produce other 

types of aromatic compounds. In particular, using nitriles as the dienophile component to 

produce pyridine compounds. The advantage of this reaction is that no catalyst is 

necessary, as the triple bond of the nitrile will yield the required double-bond 

intermediate without the need for elimination of hydrogen. The typical reaction is shown 

in Scheme 15. The reactants undergo a thermal [4+2] cyclization to produce  
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intermediates 38 and 39, as expected, each of which should aromatize and decarboxylate 

as usual, forming the desired pyridines, 40 and 41 respectively. Which of the two 

possible compounds is expected is unknown. However,  regardless of the regiochemistry 

issues, if this reaction is successful, it would represent a novel route to pyridines from 

biobased compounds. 
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Scheme 15 

 

 The first example tested was acetonitrile, where R = Me in Scheme 15. The 

advantage of using this compound as a substrate is that is a common industrial solvent. 

Additionally, any excess solvent can be easily recovered via distillation. The first reaction  
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was unsuccesful, leaving only recovered methyl acrylate. A less volatile nitrile substrate 

was attempted, benzonitrile, (R = Ph in Scheme 15)  with similar results. Even with these 

preliminary failures, there is some interest in this type of chemistry that warrants further 

investigation. 

 With several examples complete with coumalic acid derivatives, our effort was 

turned towards other pyrones as potential dienophiles. The first example considered was 

2-pyrone, which has been synthesized previously from coumalic acid.10 However, the 

reaction requires prohibitively high temperatures (650 ºC) and very specific equipment to 

be of use. Therefore, other routes towards 2-pyrone were attemped. One particular 

method started with readily available 2-furanmethanol.11,12 Unfortunately, this route 

proved more difficult than expected, suffering from an impractical amount of steps (6 

steps from 2-furanmethanol), irreproducibility of certain transformations, and low yields.  

 Another one of the potential starting pyrones is 4-hydroxy-6-methyl-2-pyrone, 

also call triacetic lactone (TAL). This compound has some value in the field of  

biorenewable chemicals because it is a potential intermediate in fatty acid biosynthesis 

and can be made on a large scale via microbes. With the previous success with Diels-

Alder reactions on methyl coumalate, it is conceivable that this new pyrone molecule will 

also be successful with similar types of reactions. 

The first Diels-Alder reaction using TAL 42 was attemped on a highly activated 

dienophile, dimethylacetylene dicarboxylate (Scheme 16).  Because this is a reaction with 

a dienophile with a triple bond, no palladium on carbon catalyst is necessary as a  
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dehydrogenating agent. Unfortunately, neither the bicyclic intermediate 43 nor the 

required aromatic compound 44 was produced. Instead, the reaction produced a complex 

mixture of uncharacterizable compounds. Similar results were found when using methyl 

propiolate as the dienophile. 
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Scheme 16 

 

These difficulties could be explained by the presence of the hydroxy group on the 

pyrone. The hydroxy group has significant ketone character (shown in Figure 7), which 

disrupts the diene character with the pyrone, thus making it less able to participate in the 

cycloaddition reactons. Likewise, the alkoxide is a reactive functional group and could 

react with the esters on the diene molecule. Finally, TAL could be a potential nucleophile 

for Michael addition, as it is a beta-keto lactone. If this is the case, then it could easily 

undergo conjugate addition to activated Michael acceptors, such as acetylenic esters.  
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Figure 7. Tautomeric forms of triacetic acid lactone 

 

 It is clear, then, that in order to procede further, the key lies in eliminating the 

interference from the alcohol. The simplest method is to remove the hydroxy moiety 

directly, to produce the simplified 6-methyl-2-pyrone 46. A previous synthesis involved 

halogenation of TAL using thionyl chloride, followed by reduction using metallic zinc  

(Scheme 18).13 The halogenation of 42 proceded smoothly to give 45, however, the 

removal of the group proved difficult, only giving decomposition. Other reported 

methods to produce 46 from 42 used stoichiometric amounts of palladium,14 which is 

extremely impractical, especially for potential larger scale reactions.   

 

 

O

O

OH

O

O

Cl

Zn
HCl O

O

42 45 46

SOCl2

 

Scheme 18 

    

 In connection with the previous work done with decarboxylation of anhydrides, it 

was envisioned that a palladium catalyzed reaction may be a possible route to 46. This 

started with the formation of the acetyl ester of TAL,15 followed by the typical palladium  
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catalyzed decarboxylation conditions as outlined in Chapter 3.16 The rationale is that the 

masked alcohol in 47 is also a vinylogous anhydride, and thus could facilitate insertion of 

palladium. Different conditions were tried, but all lead to complex mixtures (Scheme 19). 
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Scheme 19 

 

 Owing to the difficulties in directly removing the hydroxy group, another possible 

solution would be to protect the group. This would solve the issue of the unwanted side 

reactions that are caused by the alcohol moiety. The choice of protecting group is crucial. 

For example, protecting the alcohol as the benzyl ether would not be beneficial, as the 

palladium catalyst will easily remove it. Nor does protection as the silyl ether, as the 

typical tert-butyldimethyl silyl (TBDMS) or trimethyl silyl (TMS) groups could be too 

sterically demanding and may interfere with the subsequent Diels-Alder cyclizations. In 

addition, the silyl group is typically removed by treatment with fluoride, which would 

make it impractical for larger scale reactions. It was thus settled to use a simple methyl 

group to mask the alcohol. Its preparation is shown in Scheme 20.17 
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 The acetylated adduct to TAL 47 is also prime candidate as a protected TAL 

compound. In this case, the acetyl group could act as a net electron-withdrawing 

substituent, thus decreasing the electron density on the pyrone. 
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Scheme 20 

   

 Compound 48 was reacted with dimethyl acetylene dicarboylate in a similar 

fashion as in Scheme 16. Gratifyingly, the reaction proceded smoothly to produce 50 

(Scheme 21)18, thus confirming the hypothesis that, indeed, the hydroxyl group of TAL 

was interfering with the Diels-Alder reaction. 
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Scheme 21 
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 The reaction of both acetyl and methyl-protected TAL was attempted with simple 

alpha olefins and palladium on carbon catalyst. However, neither was successful. 

Additionally, the more electron-deficient methyl acrylate was used as a diene substate, 

but that was also met with no success. 

 In conclusion, a new method of preparing aromatic compounds from biobased 

pyrones is shown. It represents one of the very few methods of creating benzene ring 

systems from plant-based molecules and is a potential method of producing terephthalic 

acid.    

 

Experimental 

 Unless otherwise noted, materials were obtained from commercial suppliers and 

used without purification. Methyl coumalate was prepared via methylation of coumalic 

acid.6 Allyl phenyl ether was prepared from phenol and allyl bromide. Allyl heptyl ether 

was prepared from 1-heptanol and allyl bromide. High pressure reactions were done in an 

Autoclave Engineers EZE-Seal 100mL aparatus. Nuclear magnetic resonance 

experiments were performed with either a Varian 300 MHz or Bruker 400 MHz 

instrument. All chemical shifts are reported relative to CDCl3 (7.27 ppm for 1H and 77.23 

ppm for 13C), unless otherwise noted. Coupling constants (J) are reported in Hz with 

abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad 

singlet. High resolution mass spectra were recorded on a Kratos model MS-50 

spectrometer. Standard grade silica gel (60 Å, 32-63 µm) was used for flash column 

chromatography.  
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Reaction of methyl coumalate with terminal alkenes 

 Methyl coumalate (200 mg, 1.3 mmol), olefin (10 molar equivalents), and 50 mg 

of 10% Pd/C (0.25 w/w relative to methyl coumalate) were dissolved in 7 mL mesitylene 

in a thick walled glass sealable tube. The reaction mixture was heated in an oil bath at 

200 ºC for a 12-16 hour period. The reaction vessel was then cooled to room temperature, 

and the catalyst was removed by filtration through a pad of Celite, washing thoroughly 

with ether. The filtrate was then concentrated in vacuo and purified by silica gel column 

chromatography (10:1 hexanes/ethyl acetate) to give the correspounding pure para-

substituted methyl benzoate 14. 

 

R

CO2Me  

Methyl 4-heptylbenzoate (14a) - 1H NMR (300 MHz, CDCl3): ∂ 7.95 (d, J = 7 Hz, 2H), 

7.23 (d, J = 7 Hz, 2H), 3.90 (s, 3H), 2.65 (t, J = 7 Hz, 2H), 1.59-1.26 (m, 10H), 0.88 (t, J 

= 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): ∂ 167.4, 144.3, 129.9, 128.9, 127.3, 52.3, 

32.1, 30.0, 29.2, 26.4, 22.9, 14.3; HRMS (FAB) m/z exact mass calculated for C15H22O2 

235.1693 (MH+), found 235.1699. 

Methyl 4-octylbenzoate (14b) - 1H NMR (300 MHz, CDCl3): ∂ 7.94 (d, J = 7 Hz, 2H), 

7.24 (d, J = 7 Hz, 2H), 3.90 (s, 3H), 2.63 (t, J = 7 Hz, 2H), 1.59-1.26 (m, 12H), 0.88 (t, J 

= 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): ∂; 167.4, 148.7, 129.8, 128.6, 127.4, 52.1,  
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36.2, 32.1, 31.4, 29.8, 29.7, 29.5, 22.9, 14.3; HRMS (FAB) m/z exact mass calculated for 

C16H24O2 249.1849 (MH+), found 249.1815. 

Methyl 4-nonylbenzoate (14c) - 1H NMR (300 MHz, CDCl3): ∂ 7.96 (d, J = 7 Hz, 2H), 

7.24 (d, J = 7 Hz, 2H), 3.90 (s, 3H), 2.64 (t, J = 7 Hz, 2H), 1.59-1.26 (m, 14H), 0.88 (t, J 

= 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): ∂ 167.5, 148.7, 129.8, 128.6, 127.4, 52.1, 

36.3, 32.1, 31.4, 29.8, 29.7, 29.6, 29.5, 23.5, 14.4; HRMS (FAB) m/z exact mass 

calculated for C17H26O2 (MH+) 263.2006, found 263.2005. 

Methyl 4-benzylbenzoate (14d) - Spectral data matches that of previous papers20 

Methyl 4-(phenoxymethyl)benzoate (14e) - 1H NMR (300 MHz, CDCl3): ∂ 8.05 (d, J = 

7 Hz, 2H), 7.51 (d, J = 7 Hz, 2H), 7.31-6.91 (m, 5H), 5.13 (s, 2H), 3.92 (s, 3H);13C NMR 

(100 MHz, CDCl3): ∂ 167.1, 158.6, 142.5, 129.1, 128.9, 127.2, 121.4, 115.0, 69.5, 52.4; 

HRMS (FAB) m/z exact mass calculated for C15H14O3 243.1016 (MH+), found 243.1009. 

Methyl 4-(heptyloxymethyl)benzoate (14f) - 1H NMR (300 MHz, CDCl3): ∂ 8.03 (d, J 

= 7 Hz, 2H), 7.39 (d, J = 7 Hz, 2H), 4.55 (s, 2H), 3.75 (t, J = 7 Hz, 2H), 1.53-1.28 (m, 

10H), 0.88 (t, J = 7 Hz, 3H); 13C NMR (100 MHz, CDCl3): ∂ 167.2, 144.3, 130.3, 128.9, 

127.8, 72.0, 70.7, 52.3, 32.1, 29.9, 29.4, 26.4, 22.9, 14.3; HRMS (FAB) m/z exact mass 

calculated for C16H24O3 265.1798 (MH+), found 265.1804. 

 

Reaction of methyl coumalate with internal alkenes 

 Methyl coumalate (200 mg, 1.3 mmol), olefin (10 molar equivalents), and 50 mg 

10% Pd/C (0.25 w/w relative to methyl coumalate) were mixed in a sealable tube. The 

reaction mixture was heated in an oil bath at 200 ºC for 12-16 hours. Once complete, the  
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reaction vessel was then cooled to room temperature and the catalyst is removed by 

filtering through a pad of Celite, washing throughly with ether. The filtrate was then 

concentrated in vacuo and purified by silica gel column chromatography (2:1 

hexanes/ethyl acetate) to give pure 17. 

 

R

CO2Me

R

 

Methyl 3,4-dipropylbenzoate (17a) - 1H NMR (300 MHz, CDCl3): ∂ 7.82 (s, 1H), 7.78 

(d, J = 6 Hz, 1H), 7.20 (d, J = 6 Hz, 1H), 3.89 (s, 3H), 2.62 (t, J = 6 Hz, 4H), 1.67-1.57 

(m, 8H), 0.99 (t, J = 6 Hz, 6H); 13C NMR (100 MHz, CDCl3): ∂ 167.6, 146.2, 140.8, 

130.5, 129.4, 127.8, 127.2, 52.1, 35.1, 34.8, 24.5, 24.3, 14.4, 14.3; HRMS (QTOF) m/z 

exact mass calculated for C14H20O2 221.1536 (MH+), found 221.1532. 

Methyl 5,6,7,8,9,10,11,12-octahydrobenzo[10]annulene-2-carboxylate (17b) - 1H 

NMR (300 MHz, CDCl3): ∂ 7.86 (s, 1H), 7.77 (d, J = 6 Hz, 1H), 7.23 (d, J = 6 Hz, 1H), 

3.89 (s, 3H), 2.69 (t, J = 7 Hz, 4H), 1.72-1.39 (m, 10H); 13C NMR (100 MHz, CDCl3): ∂ 

167.6, 146.9, 141.1, 131.1, 129.9, 127.8, 127.0, 52.1, 30.0, 29.8, 29.6, 26.5, 26.4, 25.8, 

25.7, 23.1.  

Methyl 5,6,7,8,9,10-hexahydrobenzo[8]annulene-2-carboxylate (17c) -1H NMR (300 

MHz, CDCl3): ∂ 7.79 (d, J = 6 Hz, 1H), 7.78 (s, 1H), 7.16 (d, J = 6 Hz, 1H), 3.89 (s, 3H), 

2.81-2.78 (m, 4H), 1.70-1.68 (m, 4H), 1.34-1.32 (m, 4H); 13C NMR (100 MHz, CDCl3):  
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∂ 167.6, 147.2, 141.7, 130.4, 129.4, 128.2, 127.7, 52.1, 32.6, 32.5, 32.4, 32.3, 26.1, 26.0; 

HRMS (QTOF) m/z exact mass calculated for C14H18O2 219.138 (MH+), found 219.1379. 

Methyl 5,6,7,8,9,10,11,12,13,14-decahydrobenzo[12]annulene-2-carboxylate (17d) - 

1H NMR (300 MHz, CDCl3): ∂ 7.87 (s, 1H), 7.77 (d, J = 6 Hz, 1H), 7.23 (d, J = 6 Hz, 

1H), 3.89 (s, 3H), 2.69 (t, J = 7 Hz, 4H), 1.72-1.39 (m, 16H); 13C NMR (75 MHz, 

CDCl3): ∂ 167.6, 146.9, 141.4, 131.1, 129.9, 127.8, 127.0, 52.1, 30.0, 29.8, 29.5, 26.5, 

26.4, 25.8, 25.7, 23.1, 23.1; HRMS (QTOF) m/z exact mass calculated for C18H26O2 

275.2006 (MH+), found 275.2005. 

 

Reaction of coumalic acid with alkenes 

 Coumalic acid (200 mg, 1.4 mmol), olefin (10 molar equivalents), and 50 mg 

10% Pd/C (0.25 w/w relative to coumalic acid) were mixed together in a sealable tube. 

The reaction mixture was heated in an oil bath at 200 ºC for 12-16 hours. As the reaction 

was heated, the insoluble coumalic acid slowly dissolves. The reaction vessel was then 

cooled to room temperature, where the catalyst is removed by filtering through a pad of 

Celite, washing thoroughly with ether. The filtrate was then concentrated in vacuo and 

purified by silica gel column chromatography (2:1 hexanes/ethyl acetate), giving pure 

para-benzoic acid derivative 18. 
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R

CO2H  

 4-Pentylbenzoic acid (18a) - 1H NMR (400 MHz, CDCl3): ∂ 12.06-11.6 (br, 1 H), 8.05 

(d, J = 7 Hz, 2H), 7.29 (d, J = 7 Hz, 2H) 2.70 (t, J = 7 Hz, 2H), 1.73-1.53 (m, 2H) 1.53-

1.22 (m, 4H), 0.93 (t, J = 7 Hz, 3H);13C NMR (100 MHz, CDCl3): ∂ 172.8, 149.8, 130.5, 

128.8, 127.1, 36.3, 31.7, 31.1, 22.8, 14.3; HRMS (QTOF) m/z exact mass calculated for 

C12H16O2 192.115, found 191.1078 (M-H)-.  

4-Octylbenzoic acid (18b) - 1H NMR (300 MHz, CDCl3): ∂ 12.54-12.12 (br, 1 H), 8.02 

(d, J = 7 Hz, 2H), 7.27 (d, J = 7 Hz, 2H), 2.67 (t, J = 7 Hz, 2H), 1.70-1.51 (m, 2H), 1.37-

1.17 (m, 10H), 0.88 (t, J = 7 Hz);13C NMR (100 MHz, CDCl3): ∂ 178.7, 149.8, 130.5, 

128.8, 115.6, 36.4, 32.1, 31.4, 29.9, 29.7, 29.5, 22.9, 14.4; HRMS (QTOF) m/z exact 

mass calculated for C15H22O2 234.162, found 233.1547 (M-H)-. 

4-Nonylbenzoic acid (18c) - 1H NMR (300 MHz, CDCl3): ∂ 12.42-11.99 (br, 1 H), 8.03 

(d, J = 7 Hz, 2H), 7.27 (d, J = 7 Hz, 2H), 2.67 (t, J = 7 Hz, 2H), 1.70-1.55 (m, 2H), 1.40-

1.20 (m, 12H), 0.89 (t, J = 7 Hz, 3H);13C NMR (100 MHz, CDCl3): ∂ 172.8, 149.8, 

130.5, 128.8, 127.1, 36.4, 32.2, 31.4, 29.9, 29.7, 29.6, 29.5, 22.9, 14.4; HRMS (QTOF) 

m/z exact mass calculated for C16H24O2 248.1776, found 247.1704 (M-H)-. 

4-Benzylbenzoic acid (18d) - 1H NMR (300 MHz, CDCl3): ∂ 12.3-11.2 (br, 1H), 8.05 (d, 

J  = 7 Hz, 2H), 7.40-7.21 (m, 7H), 4.06 (s, 2H);13C NMR (100 MHz, CDCl3): ∂ 172.5, 

147.8, 140.2, 129.2, 129.1, 128.8, 128.3, 127.5, 126.7, 42.3; HRMS (QTOF) m/z exact 

mass calculated for C14H12O2 212.0837, found 211.0765 (M-H)-. 
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4-(Phenoxymethyl)benzoic acid (18e) - 1H NMR (300 MHz, CDCl3): ∂ 9.94 (br, 1H), 

7.36-7.25 (m, 6H), 7.12-6.80 (m, 6H), 5.16 (s, 2H); 13C NMR (100 MHz, CDCl3): ∂ 

172.0, 152.6, 141.0, 130.5, 130.0, 129.7, 127.6, 121.1, 115.6, 69.3; HRMS (QTOF) m/z 

exact mass calculated for C14H12O3 228.0789, found 227.0714 (M-H)-. 

4-((Heptyloxy)methyl)benzoic acid (18f) - 1H NMR (300 MHz, CDCl3): ∂ 9.93 (br, 

1H), 8.05 (d, J = 7 Hz, 2H), 7.43 (d, J = 7 Hz, 2H), 4.56 (s, 2H), 3.63 (d, J = 7 Hz, 2H), 

1,64-1.15 (m, 10 H), 0.87 (t, J = 7 Hz, 3H);13C NMR (100 MHz, CDCl3): ∂ 171.9, 145.1, 

128.8, 128.0, 127.5, 71.5, 71.1, 32.1, 29.9, 29.4, 26.5, 22.9, 14.3; HRMS (QTOF) m/z 

exact mass calculated for C15H22O3 250.1569, found 250.1576.  

4-(8-Methoxy-8-oxooctyl)benzoic acid (18g) - 1H NMR (300 MHz, CDCl3): ∂ 7.98 (d, J 

= 7 Hz, 2H), 7.23 (d, J = 7 Hz, 2H), 3.63 (s, 3H), 2.63 (t, J = 7 Hz, 2H), 2.24 (t, J = 7 Hz, 

2H), 1.59-1.20 (m, 10H);13C NMR (100 MHz, CDCl3): ∂ 174.5, 172.3, 149.5, 130.4, 

128.7, 127.1, 51.7, 36.2, 34.2, 31.2, 29.4, 29.2, 29.0, 25.0; HRMS (QTOF) m/z exact 

mass calculated for C16H22O4 278.1518, found 278.1517. 

4-(Benzo[d][1,3]dioxol-5-ylmethyl)benzoic acid (18h) - 1H NMR (300 MHz, CDCl3): ∂ 

12.76-11.76 (br, 1H), 8.05-7.95 (m, 2H), 7.32-7.26 (m, 2H), 6.90-6.74 (m, 3H), 6.02 (s, 

2H), 3.96 (s, 2H); 13C NMR (75 MHz, CDCl3): ∂ 172.5, 147.7, 147.4, 147.2, 136.2, 

132.4, 130.7, 127.9, 122.6, 109.7, 108.5, 101.4, 20.8; HRMS (ESI) m/z exact mass 

calculated for C15H12O4 257.0808, found 257.0808. 
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Reaction of methyl coumalate with propene 

 In a high-pressure autoclave aparatus, methyl coumalate (501 g, 3.3 mmol) and 

10% Pd/C (127 mg, 0.25 w/w relative to methyl coumalate) were mixed in ca. 50 mL of 

toluene. The reaction vessel was sealed, charged several times with propene gas until the 

solution became saturated (3.3 bar). A nitrogen head was placed on the reaction (32.1 

bar), where the mixture was heated to 200 ºC along with mechanical stirring. After 5 

hours of heating, the reaction vessel was cooled to room temperature and depressurized. 

The solution was then filtered through a pad of Celite to remove the catalyst, washing 

thoroughly with ethyl acetate. The filtrate was concentrated under reduced pressure and 

purified via flash silica gel chromatography (4:1 hexanes/ethyl acetate) to yield pure 

methyl p-toluate 19 as an off-white powder (389 g, 79%) with no recovered starting 

material remaining. The spectra of 19 all match those of the commercially available 

compound.   

 

Reaction of coumalic acid with propene 

 Coumalic acid (525 mg, 3.7 mmol) and 10% Pd/C catalyst (137 mg, 0.25 w/w 

relative to coumalic acid) were mixed in ca. 50 mL toluene in a high-presure reactor 

vessel. The vessel was sealed and charged several times with propene gas (3.0 bar). A 

nitrogen head was placed on the solution (32.0 bar), and the reaction was heated to 200 

ºC along with mechanical stirring. After 5 hours of heating, the reaction vessel was 

cooled to room temperature and depressurized. The solution was filtered through a pad of 

celite in order to remove the suspended palladium catalyst, washing thoroughly with  
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ethyl acetate. The filtrate was concentrated in vacuo, and the crude material was analyzed 

by GCMS, which indicated the prescence of the desired product 20 (8.561 min) and <5% 

of isopropyl 4-methylbenzoate 21 (8.665 min). The product was purified via flash silica 

gel chromatography (1:1 hexanes/ethyl acetate) to yield pure 20 as a white power (386 

mg, 76%). The spectra of the product matches that of the commercially-available 

compound.  

 The reaction was scaled-up using 2.014 g coumalic acid (14.4 mmol) and 10% 

Pd/C (510 mg), following the exact same procedure as previous experiments. Again, 

GCMS analysis detected the prescence of impurity 21. Pure 20 was produced as a white 

power (1.414 g, 72%).  

 

Reaction of methyl coumale with methyl acrylate 

 In a sealable, high-pressure autoclave aparatus, methyl coumalate (999 mg, 6.6 

mmol), 10% Pd/C catalyst (256 mg, 0.25 w/w equivalents relative to methyl coumalate), 

and methyl acrylate (6.6 mL, 73 mmol, 10 equiv.) were mixed in ca. 50 mL toluene. The 

reaction vessel was sealed, charged with a nitrogen atmosphere (32.1 bar) and heated to 

200 ºC along with mechanical stirring. After 5 hours, the reaction vessel was cooled to 

room temperature, and the solution was filtered through a pad of Celite to remove the 

catalyst, washing thoroughly with ethyl acetate. The filtrate was concentrated in vacuo 

and the crude compound was purified by flash silica gel chromatography (2:1 

hexanes/ethyl acetate) to give a 55:45 ratio mixture of para and meta dimethyl 

terephthalates 22 and 23 as a pale yellow solid (1.173 g, 92% overall yield). The ratio of  
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isomers is based on both 1H NMR peak integration, as well as GCMS peak ratios (22 and 

23 elute at 9.379 min and 9.418 min, respectively). The spectra for each of the 

compounds produced match those of the commercially-available compounds. 

 The above reaction was scaled up to a higher scale of coumalic acid (2.015 g, 13.2 

mmol), following a similar procedure, again using 10% Pd/C catalyst (503 mg, 0.25 w/w 

relative to methyl coumalate), and methyl acrylate (12.8 mL, 142 mmol). After 

purification, the reaction produced a roughly 1:1 mixture of isomers 22 and 23 based on 

1H NMR integration and GCMS analysis (2.475 g, 96% yield overall).  

 

Reaction of methyl coumale with ethyl acrylate 

 In a sealable, high-pressure autoclave aparatus, methyl coumalate (513 mg, 3.4 

mmol), 10% Pd/C catalyst (131 mg, 0.25 w/w equivalents relative to methyl coumalate), 

and ethyl acrylate (4.2 mL, 39 mmol, 10 equiv.) were mixed in ca. 50 mL toluene. The 

reaction vessel was sealed, charged with a nitrogen atmosphere (32.1 bar) and heated to 

200 ºC along with mechanical stirring. After 5 hours, the reaction vessel was cooled to 

room temperature, and the solution was filtered through a pad of Celite to remove the 

catalyst, washing thoroughly with ethyl acetate. The filtrate was concentrated in vacuo 

and the crude compound was purified by flash silica gel chromatography (2:1 

hexanes/ethyl acetate) to give a 55:45 ratio mixture of para and meta isomers 26 and 27 

as a yellow liquid (656 mg, 93% overall yield). The ratio of isomers is based on both 1H 

NMR peak integration, as well as GCMS peak ratios. The spectra for each of the 

compounds produced match those of found in the literature.19 
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Reaction of methyl coumalate and methyl acrylate, using LiCl catalyst 

  In a sealable, high-pressure autoclave aparatus, methyl coumalate (504 mg, 3.3 

mmol), 10% Pd/C catalyst (127 mg, 0.25 w/w equivalents relative to methyl coumalate), 

methyl acrylate (4 mL, 44 mmol, 10 equiv.), and lithium chloride (25 mg, 0.06 mmol, 

10% loading) were mixed in ca. 50 mL toluene. The reaction vessel was sealed, charged 

with a nitrogen atmosphere (32.1 bar) and heated to 200 ºC along with mechanical 

stirring. After 5 hours, the reaction vessel was cooled to room temperature, and the 

solution was filtered through a pad of Celite to remove the catalyst, washing thoroughly 

with ethyl acetate. The filtrate was concentrated in vacuo and the crude compound was 

purified by flash silica gel chromatography (2:1 hexanes/ethyl acetate) to give a roughly a 

1:1 ratio of a mixture of para and meta dimethyl terephthalates 22 and 23 as a pale 

yellow solid (591 mg, 92% overall yield). The ratio of isomers is based on both 1H NMR 

peak integration, as well as GCMS peak ratios (22 and 23 elute at 9.379 min and 9.418 

min, respectively). The spectra for each of the compounds produced match those of the 

commercially-available compounds. 

 

Reaction of methyl coumalate and methyl acrylate, using AlCl3 catalyst 

  In a sealable, high-pressure autoclave aparatus, methyl coumalate (542 mg, 3.6 

mmol), 10% Pd/C catalyst (150 mg, 0.25 w/w equivalents relative to methyl coumalate), 

methyl acrylate (4 mL, 44 mmol, 10 equiv.), and aluminum trichloride (48 mg, 0.36 

mmol, 10% loading) were mixed in ca. 50 mL toluene. The reaction vessel was sealed, 

charged with a nitrogen atmosphere (32.1 bar) and heated to 200 ºC along with  
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mechanical stirring. After 5 hours, the reaction vessel was cooled to room temperature, 

and the solution was filtered through a pad of Celite to remove the catalyst, washing 

thoroughly with ethyl acetate. The filtrate was concentrated in vacuo and the crude 

compound was purified by flash silica gel chromatography (2:1 hexanes/ethyl acetate) to 

give a roughly a 1:4 ratio of a mixture of para and meta dimethyl terephthalates 22 and 

23 as a white solid (102 mg, 15% overall yield). The ratio of isomers is based on both 1H 

NMR peak integration, as well as GCMS peak ratios (22 and 23 elute at 9.379 min and 

9.418 min, respectively). The spectra for each of the compounds produced match those of 

the commercially-available compounds. 
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GENERAL CONCLUSIONS 

 

 This thesis covers both the chemical synthesis of natural products and natural 

product analogues,  as well as the new preparation of chemicals from biobased sources.  

 Chapter 1 shows the synthesis of two new analogues of a psychoactive natural 

product, salvinorin A. These new compounds are structurally similar to salvinorin A, 

containing the required functional groups of the natural product but without the molecular 

complexity.  

 Chapter 2 describes the first synthesis of a naturally-occuring antimicrobial 

compound. Additionally, two analogues were prepared, both of which have higher 

antimicrobial activity than the corresponding natural product. 

 Chapter 3 describes the large scale preparation of alpha olefins from naturally 

occuring fatty acids via a decarbonylation procedure utilizing homogeneous palladium 

catalysts. The reaction has been proven to work well on a wide variety of carboxylic acid 

substrates, including primary, secondary, and tertiary acids.   

 Finally, chapter 4 involves the preparation of para-substituted benzoic acid 

derivatives from coumalic acid. This chemistry is one of the few methods of generating 

aromatic rings from a biobased starting material and could be used as a preparation of 

intermediates towards terephthalic acid. 
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